
Graphene-decorated
photonic waveguide devices
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Motivation

Graphene monolayer – an iconic representant of 2D materials – has introduced
a new challenge also in the field of numerical simulations of photonic devices.

Monolayer thickness: O (0.1 nm) Inter-atomic distance: 0.142 nm

How to characterize 2D materials within the frame of a classical electrodynamics?
For VIS-NIR photonics (               ): sheet conductivity of an “infinitely thin” layer1 µm 



Meng Y, Ye SW, Shen YJ, Xiao QR, Fu X, Lu RG, et al. Waveguide Engineering of Graphene Optoelectronics-Modulators and Polarizers. IEEE Phot J. 2018;10(1):6600217.

Motivation
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Electro-optic modulators with single and double graphene layer Optical switching through graphene-induced
exceptional points

Tao Y. et al., , Opt Express, 27(6), 9013-31, 2019. Chatzidimitriou D, Kriezis EE., JOSA B, 35(7), 1525-35, 2018.

Kovacevic G. et al., Applied Physics Express, 11(6), 065102, 2018. quasi-PT symmetric structure
without gain
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Surface conductivity of graphene sheet
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We will use the following approximate closed-form formula** in our further considerations:

F cE where is the energy of Fermi  level.

Graphene sheet conductivity is usually expressed in the form of a Kubo formula*

**Y.-C. Chang et al., Appl. Phys. Lett. Vol. 104, No. 26, 261909, 2014.*T. Stauber et al., Phys. Rev. B, Vol. 78, 085432, 2008.

where

. . . Fermi-Dirac distribution function,
V . . . voltage applied to the electrodes

(“electrical doping” of graphene), and
VD . . . voltage offset by  graphene natural doping
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Spectral dependence of the surface conductivity

“Interesting region” for wavelength band around 1.55 µm takes place for EF ~ 0.4 eV, for which                  .2 FE 

EF = 0.2 eV EF = 0.4 eV EF = 0.6 eV

λ = 1.45 eV λ = 1.55 eV λ = 1.65 eV
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Graphene sheet as a “boundary condition” between
x

y

z

s

a

graphene

.s x s s x a    K P E P E

Tangential component of electric field intensity
induces surface current density K:

Here,                          is a (dyadic) projector
to the plane perpendicular to      ,

0 0
x  P I x x

0x
Magnetic field continuity condition sounds then

 0 ,s a  x H H K or

 0 .s a s s s a     x H H E E 

Tangential component of      is apparentlyE
 
 

0 0 0 0

0 0

( )

x

      

    

x x E E x x E

I x x E P E

   0 0 0 0 ,s a x s x a       I x x E I x x E P E P Eor

Electric field continuity condition:

 0 ,s a  x E E 0 0 0 ,s a  x E x E0x =>

Let us introduce the sheet conductivity tensor
0 0 0

,   0 0 .
0 0

s x s s

s

 


 
    
 
 

P 

0 0 0
0 1 0 .
0 0 1

x

 
   
 
 

P

s aε  and ε



9

“Volumetric” approach to graphene

0( ) ,i    H E 

(we tacitly assume complex formalism for monochromatic waves with time dependence                    ).exp( )i t

the complex (relative) permittivity is
0

ˆ ( ).i    

Expanding the graphene sheet conductivity      into a layer of a finite thickness Δ, the “bulk” conductivity becomes
.b s  

However, most software requires calculation of       , but      is singular. To avoid problems, some “background
permittivity”      is usually added;  the “volumetric permittivity” then reads
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Simple test structure: SOI planar waveguide with graphene
We decided to compare results of both approaches by numerical modelling of a simple structure for which
rigorous dispersion formulas does exist: a planar waveguide.

Inspiration*: Simulation task:

Task: Calculate the change of the effective refractive index
of the guided mode due to the presence of graphene
(in dependence of the position of the Fermi level).

1.55  µm

*V. Sorianello et al., Nature Photonics, vol. 120, no. 12, pp. 40-44, 2017.
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Numerical comparison of b. c. and volumetric approaches
For both approaches, rigorous analytical dispersion formulas were numerically solved.

For very thin “artificial layer”, Δ = 0.34 nm, and background permittivity 1, the results are practically identical.
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(It is apparent that proper shifting the Fermi level results in an efficient phase or amplitude modulation…)
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Influence of the “volumetric thickness” of the graphene
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For            , the value of a “volumetric thickness” is not very critical.1b 
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Numerical comparison of different methods & approaches

boundary condition approach: analytical disp. eq.
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Similarity of εg and ΔNeff
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Perturbation approach
‘Volumetric’ graphene as a perturbation of the waveguide without graphene:
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*W.-P. Huang and J. Mu, Opt. Express, vol. 17, pp. 19134-19152, 2009.

From the reciprocity theorem it follows:
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Comparison of mode fields without and with graphene
Boundary condition approach, numerical solution of rigorous dispersion equation

The mode field distribution is only very weakly influenced by the graphene layer (stronger for TM mode)
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Generalized perturbation formula

For planar waveguide, the perturbation of the propagation constant reduces to
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* U. Ralević et al., J. Phys. D: Appl. Phys. 48, art. No. 355102, 2015
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Comparison of perturbation and boundary condition approaches
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Perturbation method is probably the simplest and most versatile method for the design of waveguide devices
containing graphene layers.

J. Čtyroký, J. Petráček, P. Kwiecien, I. Richter, and V. Kuzmiak, "Graphene on an optical waveguide: comparison of simulation approaches,
Optical and Quantum Electronics, vol. 52, 149, 2020, doi: https://doi.org/10.1007/s11082-020-02265-0.
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Surface plasmons on a graphene sheet
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Surface plasmons on a graphene sheet at λ = 200 µm
N

TM
, N

TE

dTM
, L

TM
, d

TE
, L

TE
 (µ

m
)

1 5
1 10

In THz spectral region ( 200 µm  THz), the plasmons on the graphene sheet are somewhat similar
to those on a metal/dielectric interface (the penetration depth  µm, the propagation length  µ

.fl = =
  m).
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Surface plasmons on a graphene sheet at λ = 1550 nm

1550At  nm, the graphene surface plasmons are with the penetration depth
of the order of a few nm and the propagation  length  below 1 µm.

l = extremely strongly localized,
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„Ribbon plasmons“

A.Y. Nikitin, T. Low, and L. Martin-Moreno, "Anomalous reflection
phase of graphene plasmons and its influence on resonators,„
Physical Review B, vol. 90, no. 4, 041407, 2014

H. W. Hou, J. H. Teng, T. Palacios, and S. Chua, "Edge plasmons and cut-off behavior
of graphene nano -ribbon waveguides,"  Opt. Commun., vol. 370, pp. 226-230, 2016.

1550

Why are we interested in ribbon plasmons? Since
the "canonic" electro-optic modulator using graphene
looks as in the figure on the right.
The differences from the structures above:
wavelength  nm, wl » 500

2

idth  nm,
graphene snadwichedd between SiO  and air.

w »
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Effect of the coupling of the TE guided mode with graphene plasmons

Coupling with graphene plasmon "ribbon" modes affects both the real and imaginary parts of the effective refractive index
of the (quasi)TE guided mode, in dependence of the applied voltage. This effect can be both harmful and useful,
depending on the concrete situation.
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“Ribbon plasmons” on the graphene stripe

Due to the very high effective refractive index
of the surface plasmon on the graphene stripe

(Re{ } is of the order of 10 to 100),
there is a very large number of "ribbon plasmons"
on the stripe.
Those

spN

 with propagation constant (along ) close
to  of the silicon nanowire can couple with
the guided mode and affect both the real and
imaginary parts of its .

eff

eff

z

N

N

To keep the analysis as simple as possible, we approximated the (complicated) reflections at the edge
of the graphene stripe by the refletion from a perfectly magnetically conducting "hard wall".
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Ex field distribution of the TE mode of the silicon nanowire
coupled with the “ribbon plasmon” on the graphene stripe

Zoomed field distribution of “ribbon plasmons”
calculated by using COMSOL

J. Čtyroký, J. Petráček, V. Kuzmiak, P. Kwiecien, and I. Richter, "Silicon waveguides with graphene: coupling of waveguide mode
to surface plasmons," Journal of Optics, vol. 22, no. 9, 095801, 2020, doi: 10.1088/2040-8986/aba965.
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The End of graphene-decorated waveguides;

Bound “states” (modes) in the continuum (BICs)

in integrated photonics



Bound states in the continuum (BICs)

Originally, a theoretical question of quantum physics about the existence of a discrete bound state
with energy within the energy band of continuous states. Solved by J. von Neumann and E.P. Wigner in
J. von Neumann, E. P. Wigner: Über merkwürdige diskrete Eigenwerte. Physikalische Zeitschrift, 1929;30:465-7.

Later, renowned interest in condensed matter physics and recently also in photonics.
A number of various photonic structures have been identified which support BICs;
they are typically resonant structures (gratings and photonic crystals) which support the existence
of a bound mode with (theoretically) infinite Q-factor within a continuous spectrum of radiation modes,
bound (lossless) waveguide modes with effective refractive indices lying within a continuum of radiation modes,
and some other structures. Any coupling of the bound modes with the continuum introduces radiation loss;
such modes with small losses are called quasi-BICs (q-BICs); in terms of traditional waveguide terminology,
the q-BICs are, in fact, (low-loss) leaky modes. In the next slides we present a few examples
of waveguide BICs and q-BICs.
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“Classical” integrated optic waveguides (so far unidentified as BICs):
Ti:LiNbO3 and APE LiNbO3 waveguides
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X-cut APE LiNbO3 planar waveguides

TE modes of planar waveguides – polarization-protected true (lossless) BICs due to LiNbO3 birefringence
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(q-)BICs using LNOI waveguide platform
Polymer-loaded LNOI waveguide
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Z.J. Yu et al.: Photonic integrated circuits with bound states in the continuum. Optica. 2019;6(10):1342-8.

Proposed application of (q-)BIC waveguides for the design of integrated photonic devices

Operation of such structures has been experimentally verified.
Problems not discussed in the paper: multimode regime (existence of TM10 mode);
rather low mode overlap with LiNbO3 crystal -> limited efficiency of electro-optic modulation;
incorrect analysis of electro-optic interaction,…
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Shallow rib q-BIC LNOI waveguides
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Uneasy fabrication; multimode operation, higher loss -> unprobable application
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Shallow rib q-BIC SOI waveguides
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Asymmetric APE LNOI waveguides – low-loss q-BICs
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The End
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