Teoretické základy

fotonických vlnovodných struktur

Základy teorie planárních vlnovodů

Vrstvový vlnovod

"Gradientní" (nehomogenní) vlnovod

Činitel odrazu rovinné vlny od rovinného rozhraní Fresnelovy vzorce

Činitel odrazu rovinné vlny od rovinného rozhraní Fresnelovy vzorce – 2

=> (podélné) konstanty šíření všech vln jsou stejné.

Pak
$$\gamma_i = \sqrt{n_1^2 - N^2}, \quad \gamma_r = -\sqrt{n_1^2 - N^2}, \quad \gamma_t = \sqrt{n_2^2 - N^2}, \quad N = n_1 \sin \theta_i.$$

Spojitost tečných složek intenzit polí na rozhraní

TE (h) polarizace

$$H_{z} = \frac{1}{i\omega\mu_{0}} \mathbf{z}_{0} \cdot \nabla \times \mathbf{E} = \frac{k_{0}}{\omega\mu_{0}} \gamma E_{y}$$

$$E_{y}: \quad E_{i} + E_{r} = E_{t}$$
$$H_{z}: \quad \gamma_{1}E_{i} - \gamma_{1}E_{r} = \gamma_{2}E_{t}$$

$$R^{TE} = \frac{E_r}{E_i} = \frac{\gamma_1 - \gamma_2}{\gamma_1 + \gamma_2};$$
$$R^{TE} = \frac{\sqrt{n_1^2 - N^2}}{\sqrt{n_1^2 - N^2}} - \sqrt{n_2^2 - N^2}}{\sqrt{n_1^2 - N^2}} + \sqrt{n_2^2 - N^2}$$

$$TM \text{ (e) polarizace}$$

$$E_{z} = -z^{0} \cdot \frac{1}{i\omega\varepsilon_{0}n^{2}} \nabla \times H = -\frac{k_{0}}{\omega\varepsilon_{0}n^{2}} \gamma H_{y}$$

$$H_{y} : \qquad H_{i} + H_{r} = H_{t}$$

$$E_{z} : \frac{\gamma_{1}}{n_{1}^{2}} H_{i} - \frac{\gamma_{1}}{n_{1}^{2}} H_{r} = \frac{\gamma_{2}}{n_{2}^{2}} H_{t}$$

$$R^{TM} = \frac{H_{r}}{H_{i}} = \frac{\gamma_{1}/n_{1}^{2} - \gamma_{2}/n_{2}^{2}}{\gamma_{1}/n_{1}^{2} + \gamma_{2}/n_{2}^{2}};$$

$$R^{TM} = \frac{n_{2}^{2}\sqrt{n_{1}^{2} - N^{2}} - n_{1}^{2}\sqrt{n_{2}^{2} - N^{2}}}{n_{2}^{2}\sqrt{n_{1}^{2} - N^{2}} + n_{1}^{2}\sqrt{n_{2}^{2} - N^{2}}}$$

Vlastnosti činitele odrazu

Disperzní rovnice planárního vrstvového vlnovodu

Vrstvový vlnovod – podmínka příčné rezonance

$$R_a R_s e^{2ik_0 \gamma_g d} = 1$$

 $2k_0\gamma_g d + \arg R_s + \arg R_a = 2\pi m$

 $\nu = \begin{cases} 0, & \text{TE} \\ 1, & \text{TM} \end{cases}$

$$k_{0}d\sqrt{n_{g}^{2}-N^{2}} = \arctan\left[\left(\frac{n_{g}}{n_{s}}\right)^{2\nu}\sqrt{\frac{N^{2}-n_{s}^{2}}{n_{g}^{2}-N^{2}}}\right] + \arctan\left[\left(\frac{n_{g}}{n_{a}}\right)^{2\nu}\sqrt{\frac{N^{2}-n_{a}^{2}}{n_{g}^{2}-N^{2}}}\right] + m\pi,$$

Disperzní diagram planárního vlnovodu

Rozložení pole vidů vrstvového vlnovodu

Disperzní rovnice gradientního vlnovodu Wignerova – Kramersova – Brillouinova (WKB) aproximace

$$k_0 \int_{x_0(N)}^0 \sqrt{n^2(x) - N^2} \, dx = \arctan\left[\left(\frac{n_g}{n_a}\right)^{2\nu} \sqrt{\frac{N^2 - n_a^2}{n_g^2 - N^2}}\right] + \left(m + \frac{1}{4}\right)\pi,$$

$$k_x = 0 \quad \Rightarrow \quad n(x_0) = N$$

Základ postupu určování profilu indexu lomu ze spektra vedených vidů

Příklad: vlnovod s exponenciálním profilem indexu lomu

Rozložení pole H_yTM vidů gradientního vlnovodu

Maxwellovy rovnice pro planární vlnovod

$$\nabla \times \mathbf{E} = i\omega\mu_{0}\mathbf{H}, \quad \nabla \times \mathbf{H} = -i\omega\varepsilon_{0}n^{2}(x)\mathbf{E} \implies \nabla \cdot \mathbf{B} = 0, \quad \nabla \cdot (n^{2}\mathbf{E}) = 0$$

$$\frac{\partial}{\partial y} = 0, \quad \mathbf{E}(x, z) = \mathbf{E}(x)\exp(ik_{0}Nz), \quad \mathbf{H}(x, z) = \mathbf{H}(x)\exp(ik_{0}Nz) \xrightarrow{x} (n^{2}\mathbf{E}) = 0$$

$$k_{0} = \omega\sqrt{\mu_{0}\varepsilon_{0}} = \frac{\omega}{c}, \quad N = \beta / k_{0} \dots \text{ efektivni index lomu}$$

$$\frac{\partial}{\partial z} = ik_{0}N, \quad \nabla = x^{0}\frac{\partial}{\partial x} + ik_{0}Nz^{0};$$
1. TE polarizace: E_{y}, H_{x}, H_{z}

$$\frac{dE_{y}}{dx} = i\omega\mu_{0}H_{z}, \\ -ik_{0}NE_{y} = -i\omega\mu_{0}H_{x}, \\ \frac{dH_{z}}{dx} - ik_{0}NH_{x} = i\omega\varepsilon_{0}n^{2}E_{y}, \qquad \frac{dE_{z}}{dx} = -i\omega\mu_{0}\frac{\left[n^{2}(x) - N^{2}\right]}{n^{2}(x)}H_{y}, \qquad \frac{dE_{z}}{dx} = -i\omega\mu_{0}\frac{\left[n^{2}(x) - N^{2}\right]}{n^{2}(x)}H_{y},$$

Maxwellovy rovnice pro planární vlnovod

Vidy TE

$$\frac{d^2 E_y(x)}{dx^2} + k_0^2 \left[n^2(x) - N^2 \right] E_y(x) = 0, \qquad \qquad \int_{-\infty}^{\infty} \left| E_y \right|^2 dx < \infty$$

$$P_{z} = \int_{-\infty}^{\infty} \mathsf{E} \times \mathsf{H}^{*} \cdot z^{0} dx = -\int_{-\infty}^{\infty} E_{y} H_{x}^{*} dx = \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} N^{*} \int_{-\infty}^{\infty} \left| E_{y} \right|^{2} dx,$$

Vidy TM

$$n^{2}(x)\frac{d}{dx}\left[\frac{1}{n^{2}(x)}\frac{dH_{y}}{dx}\right] + k_{0}^{2}\left[n^{2}(x) - N^{2}\right]H_{y}(x) = 0,$$

$$P_{z} = \int_{-\infty}^{\infty} E \times H^{*} \cdot z^{0}dx = \int_{-\infty}^{\infty} E_{x}H_{y}^{*}dx = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}N\int_{-\infty}^{\infty}\frac{1}{n^{2}(x)}\left|H_{y}\right|^{2}dx,$$

$$\int_{-\infty}^{\infty} \frac{1}{n^2(x)} \left| H_y \right|^2 dx < \infty$$

Analogie vlnové rovnice se Schrödingerovou rovnicí pro částici v potenciálové jámě

Vlnová rovnice

Schrödingerova rovnice

Vidy jako vlastní funkce lineárního diferenciálního operátoru

Vidy TE
$$\frac{d^2 E_y(x)}{dx^2} + k_0^2 n^2(x) E_y(x) = (\beta^{TE})^2 E_y(x), \quad \beta^{TE} = k_0 N^{TE}$$

Vidy TM
$$n^{2}(x) \frac{d}{dx} \left[\frac{1}{n^{2}(x)} \frac{dH_{y}}{dx} \right] + k_{0}^{2} n^{2}(x) H_{y}(x) = \left(\beta^{TM} \right)^{2} H_{y}(x), \quad \beta^{TM} = k_{0} N^{TM}$$

Ortogonalita vlastních vidů vlnovodů

Lze ukázat, že pro vedené vidy (s diskrétním spektrem) platí podmínka ortogonality

$$\frac{1}{2}\int_{-\infty}^{\infty}\mathsf{E}_{m}(x)\times\mathsf{H}_{n}(x)\cdot\mathsf{z}^{0}dx=\frac{\beta_{m}}{\left|\beta_{m}\right|}\delta_{mn}$$

Pro zářivé a evanescentní vidy (se spojitým spektrem) platí podmínka ortogonality

$$\frac{1}{2} \int_{-\infty}^{\infty} E(x,\beta) \times H_n(x,\beta') \cdot z^0 dx = \frac{\beta}{|\beta|} \delta(\beta - \beta')$$
(přitom je třeba brát v úvahu *hlavní hodnotu integrálu*)

zářivé (a evanescentní) vidy (se spojitým spektrem) jsou vždy s vedenými vidy ortogonální :

$$\frac{1}{2}\int_{-\infty}^{\infty}\mathsf{E}(x,\beta)\times\mathsf{H}_{n}(x)\cdot\mathsf{z}^{0}dx=0,$$

Pro bezeztrátové vlnovody jsou *příčné* složky polí E_{\perp} a H_{\perp} vedených vidů soufázové, takže v takovém případě platí i "výkonová" ortogonalita

$$\frac{1}{2}\int_{-\infty}^{\infty} \mathsf{E}_{m}(x) \times \mathsf{H}_{n}^{*}(x) \cdot z^{0} dx = \frac{\beta_{m}}{|\beta_{m}|} \delta_{mn}.$$

Výkon přenášený superpozicí vlastních vidů

Pokud je současně vybuzeno více (konečný počet) vedených vidů,

$$E_{\perp}(x, y, z) = \sum_{m} [a_{m}E_{m\perp}(x, y) \exp(i\beta_{m}z) + b_{m}E_{m\perp}(x, y) \exp(-i\beta_{m}z)],$$

$$H_{\perp}(x, y, z) = \sum_{n} [a_{n}H_{n\perp}(x, y) \exp(i\beta_{n}z) - b_{n}H_{n\perp}(x, y) \exp(-i\beta_{n}z)].$$

$$V \text{ kladném směru } z \qquad V \text{ záporném směru } z$$

$$P\text{řenesený výkon:} \qquad \beta_{m}, \beta_{n} \text{ jsou reálné.}$$

$$P_{z}(z) = \frac{1}{2} \operatorname{Re} \left\{ \iint_{S} E_{\perp} \times H_{\perp}^{*} \cdot dS \right\} =$$

$$= \frac{1}{2} \operatorname{Re} \left\{ \sum_{m,n} \left(a_{m}a_{n}^{*}e^{i(\beta_{m}-\beta_{n}^{*})z} - b_{m}b_{n}^{*}e^{-i(\beta_{m}-\beta_{n}^{*})z} + b_{m}a_{n}^{*}e^{-i(\beta_{m}+\beta_{n}^{*})z} - a_{m}b_{n}^{*}e^{i(\beta_{m}+\beta_{n}^{*})z} \right) \iint_{S} E_{m\perp} \times H_{n\perp}^{*} \cdot dS$$

$$V \text{ bezeztrátovém vlnovodu } \iint_{S} E_{m\perp} \times H_{n\perp}^{*} \cdot dS = \frac{\beta_{m}}{|\beta_{m}|} \delta_{mn} = \delta_{mn};$$

$$P_{z} = \frac{1}{2} \sum_{m} \left(a_{m}a_{m}^{*} - b_{m}b_{m}^{*} \right) = P_{m}^{+} - P_{m}^{-}$$

celkový výkon je roven součtu výkonů přenášených jednotlivými vidy.

Evanescentní vidy – jednosměrná superpozice

Evanescentní vidy: $\beta_m = i |\beta_m|$, $[\exp(i\beta_m z)]^* = [\exp(-|\beta_m|z)]^* = \exp(-|\beta_m|z)$, $E_{m\perp}^*(x,y) = E_{m\perp}(x,y)$, $H_{m\perp}^*(x,y) = -H_{m\perp}(x,y)$... pole fázově posunuta o $\pm \pi/2$

Evanescentní vidy
v bezeztrátovém vlnovodu
$$\iint_{S} E_{m\perp} \times H_{n\perp}^{*} \cdot dS = \frac{\beta_{m}}{|\beta_{m}|} \delta_{mn} = \pm i \delta_{mn}$$

Jednosměrná superpozice: $E_{\perp}(x, y, z) = \sum_{m} a_{m} E_{m\perp}(x, y) \exp(-|\beta_{m}|z)$, Přenesený výkon: $H_{\perp}(x, y, z) = \sum_{n} a_{n} H_{n\perp}(x, y) \exp(-|\beta_{m}|z)$.

$$P_{z}(z) = \frac{1}{2} \operatorname{Re}\left\{ \iint_{S} \mathsf{E}_{\perp} \times \mathsf{H}_{\perp}^{*} \cdot d\mathsf{S} \right\} = \frac{1}{2} \operatorname{Re}\left\{ \sum_{m,n} a_{m} a_{n}^{*} e^{i(\beta_{m} - \beta_{n}^{*})z} \iint_{S} \mathsf{E}_{m\perp} \times \mathsf{H}_{n\perp}^{*} \cdot d\mathsf{S} \right\} = \frac{1}{2} \sum_{m} a_{m} a_{m}^{*} e^{-2|\beta_{m}|z} \operatorname{Re}\left\{ \iint_{S} \mathsf{E}_{m\perp} \times \mathsf{H}_{m\perp}^{*} \cdot d\mathsf{S} \right\} = 0;$$

Evanescentní vidy – obousměrná superpozice

$$E_{\perp}(x, y, z) = \sum_{m} \left[a_{m} E_{m\perp}(x, y) \exp(-\left|\beta_{m}\right|z) + b_{m} E_{m\perp}(x, y) \exp(\left|\beta_{m}\right|z) \right],$$

$$H_{\perp}(x, y, z) = \sum_{n} \left[a_{n} H_{n\perp}(x, y) \exp(-\left|\beta_{n}\right|z) - b_{n} H_{n\perp}(x, y) \exp(\left|\beta_{n}\right|z) \right],$$

$$H_{\perp}^{*}(x, y, z) = \sum_{n} \left[a_{n}^{*} H_{n\perp}^{*}(x, y) \exp(-\left|\beta_{n}\right|z) - b_{n}^{*} H_{n\perp}^{*}(x, y) \exp(\left|\beta_{n}\right|z) \right]$$

Obousměrná superpozice:

$$P_{z}(z) = \frac{1}{2} \operatorname{Re} \left\{ \sum_{m,n} \left[a_{m} a_{n}^{*} e^{-(|\beta_{m}| + |\beta_{n}|)z} - b_{m} b_{n}^{*} e^{(|\beta_{m}| + |\beta_{n}|)z} + b_{m} a_{n}^{*} e^{(|\beta_{m}| - |\beta_{n}|)z} - a_{m} b_{n}^{*} e^{(|\beta_{n}| - |\beta_{m}|)z} \right] (\pm i\delta_{mn}) \right\}$$
$$= \pm \frac{1}{2} \operatorname{Im} \sum_{m} \left[\left(b_{m} a_{m}^{*} - a_{m} b_{m}^{*} \right) \right] \neq 0$$

Označme d délku úseku s evanescentními vlnami,

$$b_{2m} = b_{1m} \exp(|\beta_m|d), \quad b_{1m} = b_{2m} \exp(-|\beta_m|d)$$

$$P_{z}(z) = \pm \frac{1}{2} \operatorname{Im} \sum_{m} \left[\left(b_{2m} a_{1m}^{*} - a_{1m} b_{2m}^{*} \right) \exp(-\left| \beta_{m} \right| d \right] \neq 0 \quad \dots \text{ optické tunelování}$$

Metoda příčné rezonance (admitance) pro TE vidy

$$\frac{dE_y}{dx} = i\omega\mu_0 H_z, \quad \frac{dH_z}{dx} = i\omega\varepsilon_0 \left[n^2(x) - N^2\right] E_y \quad \dots \text{ Maxwellovy rovnice}$$
$$u(x) = iZ_0 \frac{H_z}{E_y} = i\sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{H_z}{E_y} = \frac{i\omega\mu_0}{\omega\sqrt{\mu_0\varepsilon_0}} \frac{H_z}{E_y} = \frac{dE_y / dx}{k_0 E_y} \quad \dots \text{ (normovaná) příčná admitance}$$
$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \quad \dots \text{ Vlnová impedance vakua}$$

Diferenciální rovnice pro příčnou admitanci:

$$\frac{1}{k_0} \frac{du}{dx} = i \frac{Z_0}{k_0} \frac{\frac{dH_z}{dx} E_y - H_x \frac{dE_y}{dx}}{E_y^2} = -\underbrace{\sqrt{\frac{\mu_0}{\varepsilon_0}}}_{1} \frac{1}{\omega\sqrt{\mu_0\varepsilon_0}} \omega\varepsilon_0 \Big[n^2 (x) - N^2 \Big] + \underbrace{\sqrt{\frac{\mu_0}{\varepsilon_0}}}_{0} \frac{\omega\mu_0}{\omega\sqrt{\mu_0\varepsilon_0}} \frac{H_z^2}{E_y^2};$$

Výsledná soustava dvou rovnic 1. řádu s okrajovými podmínkami (pro vedený vid)

$$\frac{1}{k_0}\frac{du}{dx} = -u^2(x) - \left[n^2(x) - N^2\right], \qquad \lim_{x \to -\infty} u(x) = \lim_{x \to -\infty} \frac{1}{k_0}\frac{dE_y}{E_y} = -\sqrt{N^2 - n_a^2}$$

$$\frac{1}{k_0}\frac{dE_y}{dx} = u(x)E_{y'}, \qquad \qquad \lim_{x \to \infty} u(x) = \lim_{x \to \infty} \frac{1}{k_0}\frac{dE_y}{E_y} = \sqrt{N^2 - n_s^2}$$
Riccatiho rovnice

Metoda příčné rezonance (impedance) pro TM vidy

$$\frac{dH_y}{dx} = -i\omega\varepsilon_0 n^2(x)E_{z'} \quad \frac{dE_z}{dx} = -i\omega\mu_0 \frac{\left[n^2(x) - N^2\right]}{n^2(x)}H_y$$
$$u(x) = \frac{dH_y}{n^2k_0H_y} \frac{dx}{dx} = -\frac{i\omega\varepsilon_0}{\omega\sqrt{\mu_0\varepsilon_0}}\frac{E_z}{H_y} = -i\sqrt{\frac{\varepsilon_0}{\mu_0}}\frac{E_z}{H_y} = -iY_0\frac{E_z}{H_y}$$
$$Y_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}} = \frac{1}{Z_0} \quad \dots \text{ vlnová admitance vakua}$$

... Maxwellovy rovnice

... (normovaná) příčná impedance

 Y_0^2

Diferenciální rovnice pro příčnou impedanci:

$$\frac{1}{k_0}\frac{du}{dx} = -i\frac{Y_0}{k_0}\frac{\frac{dE_z}{dx}H_y - E_x\frac{dH_y}{dx}}{H_y^2} = -\underbrace{\sqrt{\frac{\varepsilon_0}{\mu_0}}\frac{1}{\omega\sqrt{\mu_0\varepsilon_0}}}_{1}\omega\mu_0 \frac{\left[n^2(x) - N^2\right]}{n^2(x)} - \underbrace{\sqrt{\frac{\varepsilon_0}{\mu_0}}\frac{\omega\varepsilon_0}{\omega\sqrt{\mu_0\varepsilon_0}}}_{1}n^2\frac{E_z^2}{H_y^2};$$

Výsledná soustava dvou rovnic 1. řádu s okrajovými podmínkami (pro vedený vid)

$$\frac{1}{k_0}\frac{du}{dx} = -n^2(x)u^2(x) - \frac{\left[n^2(x) - N^2\right]}{n^2(x)}, \quad \lim_{x \to -\infty} u(x) = \lim_{x \to -\infty} \frac{1}{k_0}\frac{dH_y}{n^2H_y} = -\frac{\sqrt{N^2 - n_a^2}}{n^2}$$

$$\frac{1}{k_0}\frac{dH_y}{dx} = n^2(x)u(x)H_{y'}, \quad \lim_{x \to \infty} u(x) = \lim_{x \to \infty} \frac{1}{k_0}\frac{dH_y}{n^2H_y} = \frac{\sqrt{N^2 - n_a^2}}{n^2}$$
Riccatilito rovnice

Řešení Riccatiho rovnice

Riccatiho rovnici

$$\frac{1}{k_0}\frac{du}{dx} = -u^2(x) - \left[n^2(x) - N^2\right]$$

řešíme např. integrací Rungeho-Kuttovou metodou s počáteční podmínkou

$$u(x_{\min}) = -\sqrt{N^2 - n_s^2}, \ N^2 \approx n_1^2 - \delta.$$

Měníme postupně *N* tak, aby na konci integračního intervalu byla splněna i druhá podmínka,

$$-n_a^2$$
 $u(x_{\rm max}) = \sqrt{N^2 - n_a^2}$

X

Vyšší vidy: singularity (póly) funkce u(x)

Vyšší vidy

Vidy vyšších **ř**ád**ů** hledáme analogicky z výchozího odhadu $N_{m+1}^2 \approx N_m^2 - \delta$.

Přitom vznikne problém, že funkce $E_{ym}(x)$ prochází v intervalu $\langle x_{min}, x_{max} \rangle$ *m*-krát nulou,

takže
$$u_m(x) = \frac{dE_{ym}/dx}{k_0 E_{ym}}$$
 má v těchto bodech póly.

Problém lze elegantně obejít tak, že v okolí pólů přejdeme od řešení rovnice pro $u_m(x)$

na řešení rovnice pro $v_m(x) = 1 / u_m(x)$, která má podobný tvar:

$$\frac{1}{k_0}\frac{dv(x)}{dx} = 1 + \left[n^2(x) - N^2\right]v^2(x).$$

Funkce $v_m(x)$ prochází v kritických bodech nulou, takže řešení nemá singularity.

Po průchodu nulou se opět vrátíme k řešení rovnice pro $u_m(x)$.

Výpočet funkce $E_{vm}(x)$ nečiní potíže, poněvadž funkce $u_m(x)$ je integrovatelná.

Rozložení pole vyšších vidů

$$u(x) = \frac{dE_y / dx}{k_0 E_y} \Rightarrow \underbrace{\frac{dE_y}{dx}}_{W_0} = k_0 u(x) E_y(x) \qquad \text{TE vidy}$$
$$u(x) = \frac{dH_y / dx}{n^2 k_0 H_y} \Rightarrow \underbrace{\frac{dH_y}{dx}}_{W_0} = \frac{k_0}{n^2} u(x) H_y(x) \qquad \text{TM vidy}$$

Řešení přímou integrací metodou Rungeho a Kutty. Funkce určena až na multiplikativní konstantu, kterou můžeme určit z normovací podmínky

$$\int_{-\infty}^{\infty} \left| E_{ym}(x) \right|^2 dx = \frac{2Z_0}{\left| N_m \right|}.$$
 TE vidy
$$\int_{-\infty}^{\infty} \frac{1}{n^2(x)} \left| H_{ym}(x) \right|^2 dx = \frac{2Y_0}{\left| N_m \right|}$$
 TM vidy

"Planární" (1D) struktura jako multivrstva

Metoda přenosové matice

Z Maxwellových rovnic plyne

J. Chilwell and I. Hodgkinson, JOSA A, 1, pp. 742-753, 1984. Normujeme souřadnice:

 $\xi = k_0 x$, $\zeta = k_0 z$, $Z_0 = Y_0^{-1} = \sqrt{\mu_0} / \varepsilon_0$, $\beta = k_0 N$; Normujeme složky pole: $(\exp(i\beta z) = \exp(iN\zeta))$ TM polarizace TE polarizace $E_{y} = \sqrt{2k_{0}Z_{0}f(\xi,\zeta)}, \qquad H_{y} = \sqrt{2k_{0}Y_{0}f(\xi,\zeta)},$

$$H_{x} = -\sqrt{2k_{0}Y_{0}}n(\xi,\zeta), \qquad E_{x} = \sqrt{2k_{0}Z_{0}}n(\xi,\zeta), H_{z} = -i\sqrt{2k_{0}Y_{0}}g(\xi,\zeta), \qquad E_{z} = i\sqrt{2k_{0}Z_{0}}g(\xi,\zeta).$$

$$\frac{d}{d\xi} \begin{pmatrix} f(\xi) \\ g(\xi) \end{pmatrix} = \begin{pmatrix} 0 & \varepsilon^{\nu} \\ \gamma^2 / \varepsilon & 0 \end{pmatrix} \cdot \begin{pmatrix} f(\xi) \\ g(\xi) \end{pmatrix}, \quad h(\xi) = \frac{N}{\varepsilon^{\nu}} f(\xi), \quad \gamma^2 = \varepsilon - N^2. \qquad \nu = \begin{cases} 0 \text{ pro TE} \\ 1 \text{ pro TM} \end{cases}$$

Řešením ie

$$\begin{array}{l} \text{Resenting f}\\ f(\xi)\\ g(\xi) \end{array} = \mathsf{M} \cdot \begin{pmatrix} f(\xi_0)\\ g(\xi_0) \end{array} \end{pmatrix}, \quad \mathsf{M} = \exp\left[\begin{pmatrix} 0 & \varepsilon^{\nu}\\ \frac{\gamma^2}{\varepsilon^{\nu}} & 0 \end{pmatrix} (\xi - \xi_0) \right] = \begin{pmatrix} \cos\gamma(\xi - \xi_0) & \pm \frac{(\varepsilon)^{\nu}}{\gamma} \sin\gamma(\xi - \xi_0) \\ \mp \frac{\gamma}{\varepsilon^{\nu}} \sin\gamma(\xi - \xi_0) & \cos\gamma(\xi - \xi_0) \end{pmatrix}$$

Metoda přenosové matice pro 1D multivrstvy...

$$\begin{pmatrix} f(\xi_{l+1}) \\ g(\xi_{l+1}) \end{pmatrix} = M_l^+ \cdot \begin{pmatrix} f(\xi_l) \\ g(\xi_l) \end{pmatrix}^{\prime}, \qquad M_l^{\pm} = \begin{pmatrix} \cos \gamma_l (\xi_{l+1} - \xi_l) & \pm \frac{(\varepsilon_l)^{\nu}}{\gamma_l} \sin \gamma_l (\xi_{l+1} - \xi_l) \\ \mp \frac{\gamma_l}{\varepsilon_l^{\nu'}} \sin \gamma_l (\xi_{l+1} - \xi_l) & \cos \gamma_l (\xi_{l+1} - \xi_l) \end{pmatrix}$$

$$\begin{cases} \bullet & \text{Okrajové podmínky:} & f(\xi_{\min}) = f(\xi_{\max}) = 0 \text{ nebo } g(\xi_{\min}) = g(\xi_{\max}) = 0 \\ \# M^- = \prod_{l=M}^{L+1} M_l^-, & M^+ \cdot \begin{pmatrix} 0 \\ g_{\min} \end{pmatrix} = M^- \cdot \begin{pmatrix} 0 \\ g_{\min} \end{pmatrix} \\ \text{nebo} \\ M^+ = \prod_{l=1}^{L} M_l^+, & M^+ \cdot \begin{pmatrix} f_{\min} \\ 0 \end{pmatrix} = M^- \cdot \begin{pmatrix} f_{\max} \\ 0 \end{pmatrix} \\ \end{pmatrix}$$

$$\begin{pmatrix} M_{12}^+ & M_{12}^- \\ M_{22}^+ & M_{22}^- \end{pmatrix} \cdot \begin{pmatrix} g_{\min} \\ g_{\max} \end{pmatrix} = 0 \text{ nebo } \begin{pmatrix} M_{11}^+ & M_{11}^- \\ M_{21}^+ & M_{21}^- \end{pmatrix} \cdot \begin{pmatrix} f_{\min} \\ f_{\max} \end{pmatrix} = 0$$

Metoda není numericky dostatečně stabilní, pokud jsou v multivrstvě tlusté vrstvy s malým indexem lomu (sady vrstev nejsou vzájemně opticky svázány) Zlepšení stability: úprava algoritmu na některé z následujících forem:

- Metoda příčné imitance (impedance, admitance);
- Metoda rozptylové matice

Rozložení polí vidů vrstvového vlnovodu

Více o okrajových podmínkách

- Otevřená struktura vhodné pro nalezení několika vidů (vedené, vytékající)
- Dokonale odrazné "tvrdé stěny" elektrické nebo magnetické vhodné k diskretizaci spojitého spektra zářivých vidů pro metodu rozvoje ve vlastní vidy
- Absorpční okrajové podmínky pro absorpci parazitních odrazů;

– "dokonale přizpůsobené vrstvy" (perfectly matched layers, PML)
 J.-P. Bérenger, J. Comp. Phys., vol. 114, pp. 185-200, 1994

PMLs v reprezentaci komplexní souřadnice ("complex coordinate stretching") (F. Olyslager 1998; P. Bienstman 2001)

Komplexní tloušťka vrstev způsobuje exponenciální útlum:

$$d = d' + id''$$

 $\exp(ik_0\gamma d) = \exp(ik_0\gamma d')\exp(-k_0\gamma d'')$

Formálně velmi jednoduchý algoritmus *izotropní prostředí;* malý útlum pro tečný dopad *neúplnost* souboru vlastních funkcí (?) Technické problémy jednodimenzionálních modálních metod:

- nelineární problém vlastních hodnot,
- ztrátové úlohy vyžadují hledání nul v komplexní rovině

 $\Phi(N) = M_{1i}^+(N)M_{2i}^-(N) - M_{2i}^+(N)M_{1i}^-(N) = 0, \quad i = 1 \text{ nebo } 2$

 $\Phi\,$ - složitá transcendentní funkce

Algoritmy pro hledání komplexních nul:

- Metoda křivkových integrálů (Cauchyova věta)
 - "argument principle method" musíme počítat funkci i její derivaci
 - "ADR algoritmus" stačí znát funkční hodnoty, složitější výpočet
- Disperzní funkce F(b) musí být v uvažované oblasti holomorfní (regulární)
- Spolehlivé, ale velmi pomalé metody
 - obtížně aplikovatelné pro hledání velkého množství vidů
- "Metoda sledování kořenů":
 - "vypneme" všechny ztrátové mechanismy, najdeme reálné kořeny
 - pomalu zvyšujeme ztráty a dohledáváme nuly v komplexní rovině jednoduchým algoritmem (např. Newtonovou metodou).
- Mnohem rychlejší, méně spolehlivé

Vlastní vidy kanálkových vlnovodů

$$\nabla \times \nabla \times \mathbf{E} - k_0^2 \varepsilon (\mathbf{x}, \mathbf{y}) \mathbf{E} = \mathbf{0}$$
$$\nabla \cdot (\varepsilon \mathbf{E}) = \mathbf{0}$$
$$\nabla \cdot \mathbf{E} = -\frac{1}{\varepsilon} \nabla \varepsilon \cdot \mathbf{E} = -\nabla (\ln \varepsilon) \cdot \mathbf{E}$$
$$\Delta \mathbf{E} + \nabla [\nabla (\ln \varepsilon) \cdot \mathbf{E}] + k_0^2 \varepsilon \mathbf{E} = \mathbf{0}$$

úplná vektorová rovnice

Oddělíme příčné a podélné složky pole:

 $\mathsf{E} = \mathsf{e}(x, y) e^{i\beta z} = \mathsf{e}_{\perp}(x, y) e^{i\beta z} + \mathsf{e}_{z}(x, y) e^{i\beta z}$

Po úpravě

$$\begin{split} \Delta_{\perp} \mathbf{e}_{\perp} + \nabla_{\perp} \Big[\nabla_{\perp} \Big(\ln \varepsilon \Big) \cdot \mathbf{e}_{\perp} \Big] + \Big(k_0^2 \varepsilon - \beta^2 \Big) \mathbf{e}_{\perp} &= \mathbf{0}, \\ \mathbf{e}_z = \frac{i}{\beta} \mathbf{z}^0 \big[\nabla_{\perp} \varepsilon + \nabla_{\perp} \big] \cdot \mathbf{e}_{\perp} \end{split}$$

Vidy kanálkových vlnovodů jsou hybridní – mají všechny složky pole nenulové

Přibližné metody: Marcatiliho metoda (separace proměnných), metoda efektivního indexu lomu,

Numerické metody: skalární, semivektorové, vektorové (nejčastěji modální, FD, FE)

$$\Delta_{\perp} e(x,y) + \underbrace{\nabla_{\perp} (\exists n \in) \cdot e_{\perp}}_{\text{Zanedbáme - malý člen}} + k_0^2 \left[n^2 (x,y) - N^2 \right] e(x,y) = 0 \quad \text{Separace proměnných:} \\ n^2_{\perp} e(x,y) + \underbrace{\nabla_{\perp} (\exists n \in) \cdot e_{\perp}}_{\text{Zanedbáme - malý člen}} + k_0^2 \left[n^2 (x,y) - N^2 \right] e(x,y) = 0 \quad \text{Separace proměnných:} \\ n^2_{\perp} (x,y) = n_x^2 (x) + n_y^2 (y) - const \\ n^2_{\perp} + n_s^2 - n_g^2 \qquad n_a^2 \qquad n_a^2 + n_s^2 - n_g^2 \\ n_s^2 \qquad n_g^2 \qquad n_g^2 \qquad n_s^2 \qquad p^2_{\perp} + n_s^2 - n_g^2 \\ n_s^2 \qquad n_g^2 \qquad n_g^2 \qquad n_s^2 \qquad p^2_{\perp} + k_0^2 \left[n_x^2 - N_x^2 \right] e_x (x) = 0, \\ \frac{d^2 e_x (x)}{dx^2} + k_0^2 \left[n_y^2 - N_x^2 \right] e_x (x) = 0, \\ \frac{d^2 e_y (y)}{dy^2} + k_0^2 \left[n_y^2 - N_y^2 \right] e_y (y) = 0, \\ N^2 = N_x^2 + N_y^2 - const \\ \text{K tomu je třeba modifikovat profil } n(x) \\ v \ rohových \ oblastech: \\ volme např. \quad const = n_g^2 \\ n_g^2, \quad 0 < x < b, \\ n_s^2, \quad x < 0 \qquad n_y^2 = \begin{cases} n_g^2, \quad 0 < y < a, \\ n_s^2, \quad y > a \end{cases} \quad \underbrace{N^2 = N_x^2 + N_y^2 - n_g^2} \\ N^2 = N_x^2 + N_y^2 - n_g^2 \\ N^2 = N_x^2 + N_y^2 + N_y^2 + N_y^2 + N_y^2 \\ N^2 = N_x^2 + N_y^2 + N_y^2 + N_y^2 \\ N^$$

Nevýhoda: malá přesnost blízko kritické frekvence (pole slabě vedené)

Porovnání výsledků Marcartiliho metody s přesným řešením

Čím je vid slaběji vedený, tím větší část jeho energie se šíří v rohových oblastech; efektivní index lomu se pro velmi slabě vedoucí vlnovody blíží indexu lomu v rohových oblastech substrátu.

Metoda efektivního indexu lomu pro difúzní vlnovody

$$\begin{split} \Delta_{\perp} e(x,y) + k_0^2 \Big[n^2 \, (x,y) - N^2 \Big] e(x,y) &= 0 \\ \text{1. Předpoklad slabší závislosti na } y \\ e(x,y) &\cong e_x \, (x;y) e_y \, (y) \\ \frac{d^2 e_x \, (x;y)}{dx^2} + k_0^2 \Big[n^2 \, (x;y) - N_x^2 \, (y) \Big] e_x \, (x;y) = 0 \\ \text{Řešíme hloubkovou rovnici pro různá } y. \\ \text{Získáme} \quad N_x \, (y). \end{split}$$

2. Řešíme "laterální" rovnici

$$\frac{d^{2}e_{y}(y)}{dy^{2}} + k_{0}^{2} \left[N_{x}^{2}(y) - N^{2} \right] e_{y}(y) = 0.$$

Výhoda: jednoduchost, intuitivnost.

Nevýhoda: menší přesnost, zejména v blízkosti kritické frekvence.

"Rigorózní" metoda výpočtu vedených vidů 2D vlnovodů

Metoda p**ř**ímek (Method of Lines, MoL) – vyžaduje 1D diskretizaci, ~FD metoda R. Pregla a jeho žáci, Fern-Universität Hagen, SRN

Metoda sešívání vidů (Film Mode Matching, FMM)

(mikrovlny 1950++, fotonika Sudbø 1993, 1994)

Příčné rozložení indexu lomu musí být po částech konstantní

- Průřez rozdělíme na laterálně uniformní "řezy"; každý řez představuje multivrstvu
- Najdeme TE a TM vidy v každém řezu
- Celkové pole vyjádříme jako superpozici TE a TM vidů
- Na rozhraních mezi řezy splníme podmínky spojitosti tečných složek

Stabilní formalismus "immitanční" (admitanční, impedanční, metoda rozptylové matice); vektorové řešení

Základy metody FMM

Normování:

$$(\xi, \eta, \zeta) = k_0 (x, y, z), \quad \overline{\nabla} = \frac{1}{k_0} \nabla, \quad k_0 = \omega \sqrt{\varepsilon_0 \mu_0}, \quad Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}}, \quad Y_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}} = \frac{1}{Z_0}.$$

$$\mathsf{E}(x, y, z) = \sqrt{2Z_0} k_0 \mathsf{e}(\xi, \eta, \zeta), \quad \mathsf{H}(x, y, z) = \sqrt{2Y_0} k_0 \mathsf{h}(\xi, \eta, \zeta).$$

Maxwellovy rovnice pak mají tvar $\overline{\nabla} \times e = i h$, $\overline{\nabla} \times h = -i \varepsilon e$.

 $\varepsilon(\xi, \eta)$ je relativní permitivita vlnovodu závislá pouze na příčných souřadnicích

Pole v každém řezu nezávislém na *y*-souřadnici lze spočítat z *derivací dvou skalárních funkcí* – Hertzových "vektorů" (o jediné složce):

$$\pi^{h} = \mathbf{x}^{0} \sum_{m} f_{m}^{h}(\xi) p_{m}^{h}(\eta) e^{iN_{z}\zeta}, \qquad \pi^{e} = \mathbf{x}^{0} \sum_{m} f_{m}^{e}(\xi) p_{m}^{e}(\eta) e^{iN_{z}\zeta},$$

$$\text{laterální závislost amplitud}$$

$$\text{"vertikální vidové funkce"} e^{i\beta z} = e^{ik_{0}N_{z}z} = e^{iN_{z}\zeta}$$

Známe-li π , úplné vektorové pole pak spočítáme pomocí vztahů

$$e^{h} = i \,\overline{\nabla} \times \boldsymbol{\pi}^{h}, \qquad h^{h} = \overline{\nabla} \times \overline{\nabla} \times \boldsymbol{\pi}^{h}, \\ e^{e} = \frac{1}{\varepsilon} \,\overline{\nabla} \times \overline{\nabla} \times \boldsymbol{\pi}^{e}, \qquad h^{e} = -i \,\overline{\nabla} \times \boldsymbol{\pi}^{e}.$$

Základy metody FMM – 2

Hertzovy vektory splňují Helmholtzovu rovnici

$$\Delta \pi^{h,e} + \varepsilon \, \pi^{h,e} = 0,$$

Ta je splněna, pokud "vidové funkce" f splňují rovnice

$$\frac{d^{2}f^{h}(\xi)}{d\xi^{2}} + \left[\varepsilon(\xi) - \left(N_{x}^{h}\right)^{2}\right]f^{h}(\xi) = 0, \quad \varepsilon\frac{d}{d\xi}\left(\frac{1}{\varepsilon}\frac{df^{e}}{d\xi}\right) + \left[\varepsilon(\xi) - \left(N_{x}^{e}\right)^{2}\right]f^{e}(\xi) = 0.$$

a laterální závislosti $p^{h}(\eta)$, $p^{e}(\eta)$ jsou řešením rovnic

$$rac{d^2 p^{h,e}}{d\eta^2} + \left(N_y^{h,e}
ight)^2 p^{h,e} = 0$$
, přičemž $\left(N_y^{h,e}
ight)^2 + N_z^2 = \left(N_x^{h,e}
ight)^2$,

Z rovnic pro p^{h,e}(h) pak snadno odvodíme "laterální přenosovou matici"

$$\begin{pmatrix} p(\eta + \Delta \eta) \\ q(\eta + \Delta \eta) \end{pmatrix} = \begin{pmatrix} \cos[N_y \Delta \eta] & \frac{1}{N_y} \sin[N_y \Delta \eta] \\ -N_y \sin[N_y \Delta \eta] & \cos[N_y \Delta \eta] \end{pmatrix} \cdot \begin{pmatrix} p(\eta) \\ q(\eta) \end{pmatrix}, \text{ kde } q(\eta) = \frac{dp(\eta)}{d\eta}.$$
Úplné vektorové pole v s-tém řezu je dáno superpozicí vidů:

$${}^{s}e_{x}^{h}\left(\xi,\eta\right) = 0, \qquad {}^{s}h_{x}^{h}\left(\xi,\eta\right) = \sum_{m} \left({}^{s}N_{xm}^{h}\right)^{2} {}^{s}p_{m}^{h} {}^{s}f_{m}^{h}\left(\xi\right),$$
$${}^{s}e_{y}^{h}\left(\xi,\eta\right) = -N_{z}\sum_{m}{}^{s}p_{m}^{h} {}^{s}f_{m}^{h}\left(\xi\right), \qquad {}^{s}h_{y}^{h}\left(\xi,\eta\right) = \sum_{m}{}^{s}q_{m}^{h} {}^{s}g_{m}^{h}\left(\xi\right),$$
$${}^{s}e_{z}\left(\xi,\eta\right) = -i\sum_{m}{}^{s}q_{m}^{h} {}^{s}f_{m}^{h}\left(\xi\right), \qquad {}^{s}h_{z}^{h}\left(\xi,\eta\right) = iN_{z}\sum_{n}{}^{s}p_{m}^{h} {}^{s}g_{m}^{h}\left(\xi\right).$$

a TM

ΤE

$${}^{s}e_{x}^{h}(\xi,\eta) = \frac{1}{{}^{s}\varepsilon(\xi)}\sum_{m} ({}^{s}N_{xm}^{e})^{2} {}^{s}p_{m}^{e}{}^{s}f_{m}^{e}(\xi), \qquad {}^{s}h_{x}^{e}(\xi,\eta) = 0,$$

$${}^{s}e_{y}^{e}(\xi,\eta) = \sum_{m}{}^{s}q_{m}^{e}{}^{s}g_{m}^{e}(\xi), \qquad {}^{s}h_{y}^{e}(\xi,\eta) = N_{z}\sum_{m}{}^{s}p_{m}^{e}{}^{s}f_{m}^{e}(\xi),$$

$${}^{s}e_{z}^{e}(\xi,\eta) = i N_{z}\sum_{m}{}^{s}p_{m}^{e}{}^{s}g_{m}^{e}(\xi), \qquad {}^{s}h_{z}^{e}(\xi,\eta) = i \sum_{m}{}^{s}q_{m}^{e}{}^{s}f_{m}^{e}(\xi),$$

$${}^{s}g_{m}^{h} = \frac{d^{s}f_{m}^{h}}{d\xi}, \qquad {}^{s}g_{m}^{e}(\xi) = \frac{1}{{}^{s}\varepsilon(\xi)}\frac{d^{s}f_{m}^{e}}{d\xi}.$$

kde

Šíření vidů uvnitř téhož "řezu" je popsáno "laterální přenosovou maticí".

Na hranicích mezi řezy musí být spojité tečné složky intenzit polí. S využitím ortogonálních vlastností polí vlastních vidů a identit plynoucích z vlnové rovnice získáme transformační vztahy mezi "laterálními amplitudami" p a q mezi řezy *s* a *t* v maticovém tvaru s diagonálními maticemi ^s N^{h,e}_x, ^t N^{h,e}_x

$${}^{s} \mathsf{p} = \left({}^{s} \mathsf{N}_{x}^{2}\right)^{-1} \cdot {}^{s,t} \mathsf{O} \cdot {}^{t} \mathsf{N}_{x}^{2} \cdot {}^{t} \mathsf{p}, \qquad {}^{s} \mathsf{q} = \left({}^{t,s} \mathsf{O}\right)^{T} \cdot {}^{t} \mathsf{q} - {}^{s,t} \mathsf{X} \cdot {}^{t} \mathsf{p},$$
kde
$${}^{s,t} \mathsf{O} = \left({}^{s,t} \mathsf{O}^{hh} \quad 0 \\ 0 \quad {}^{s,t} \mathsf{O}^{ee}\right), \qquad {}^{s,t} \mathsf{X} = \left({}^{0} \quad {}^{N_{z}} {}^{s,t} \mathsf{O}^{he} \\ -N_{z} \left({}^{t,s} \mathsf{O}^{he}\right)^{T} \quad 0\right).$$
TE-TE
$${}^{s,t} \mathsf{O}_{mn}^{hh} = \int_{\xi_{\min}}^{\xi_{\max}} {}^{s} f_{m}^{h}(\xi) {}^{t} f_{n}^{h}(\xi) \, \mathrm{d}\xi, \qquad {}^{s,t} \mathsf{O}_{mn}^{ee} = \int_{\xi_{\min}}^{\xi_{\max}} {}^{s} \frac{f_{m}^{e}(\xi) {}^{t} f_{n}^{e}(\xi)}{{}^{t} \varepsilon(\xi)} \, \mathrm{d}\xi, \qquad \mathsf{TM-TM}$$
TE-TM
$${}^{s,t} \mathsf{O}_{mn}^{he} = \int_{\xi_{\min}}^{\xi_{\max}} {}^{s} \frac{f_{m}^{h}(\xi) {}^{t} \frac{\mathrm{d}^{t} f_{n}^{e}(\xi)}{\mathrm{d}\xi} \, \mathrm{d}\xi + \frac{{}^{t} \mathsf{N}_{xn}^{e2}}{{}^{s} \mathsf{N}_{xm}^{h2}} \int_{\xi_{\min}}^{\xi_{\max}} {}^{ds} \frac{\mathrm{d}^{s} f_{m}^{h}(\xi) {}^{t} \frac{\mathrm{d}^{t} f_{n}^{e}(\xi) {}^{t} \mathrm{d}\xi}.$$

Poněvadž formulace založená na přenosové matici je nestabilní, použijeme s výhodou *immitanční (impedanční resp. admitanční) formulaci*:

Zavedeme immitanční matici U vztahem

$$q(\eta) = U(\eta) \cdot p(\eta).$$

Pro transformaci immitanční matice uvnitř jednoho (laterálně homogenního) řezu lze z maticové rovnice pro p a q odvodit vztah

$$\begin{split} \mathsf{U}(\eta + \Delta \eta) &= \mathsf{T}(\eta) - \mathsf{S}(\eta) \cdot \left[\mathsf{U}(\eta) + \mathsf{T}(\eta)\right]^{-1} \cdot \mathsf{S}(\eta), \\ \text{kde} \\ \mathsf{S}(\eta) &= \mathsf{N}_y \cdot \sin^{-1} \big(\mathsf{N}_y \Delta \eta\big), \quad \mathsf{T}(\eta) = \mathsf{N}_y \cdot \tan^{-1} \big(\mathsf{N}_y \Delta \eta\big). \end{split}$$

Pro transformaci matice U mezi řezy s a t pak dostaneme

$${}^{t}\mathsf{U} = \left({}^{s,t}\mathsf{O}\right)^{\mathsf{T}} \cdot \left[{}^{s}\mathsf{U} \cdot \left({}^{s}\mathsf{N}_{x}^{2}\right)^{-1} \cdot {}^{s,t}\mathsf{O} \cdot {}^{t}\mathsf{N}_{x}^{2} + {}^{s,t}\mathsf{X}\right].$$

Podobné relace platí i pro transformace ve zpětném směru souřadnice η .

Disperzní rovnice je vytvořena podobně jako u planární multivrstvy.

Okrajové podmínky ve vnějších řezech určují hodnotu impedancí resp. admitancí; pro otevřené struktury platí

 $U = \pm i N_{y'}$

zatímco pro dokonale vodivé stěny platí

$$U = 0$$
 or $U^{-1} = 0$.

Postupné transformace matice U z obou stran do vhodně zvoleného místa průřezu

a disperzní rovnice pro N_z and p je pak

$$\left(\mathsf{U}^+ - \mathsf{U}^-\right) \cdot \mathsf{p} = \mathsf{0}.$$

Z podmínky nulového determinantu určíme N_z a k němu pak najdememe vektor amplitud pole p.

Příklad vektorového rozložení pole

Vlnovod "SOI", příčné rozměry $400 \times 300 \text{ nm}^2$, I = 1550 nm

Vid TE₀₀

Jednoduchá poruchová teorie pro planární vlnovod l

Neporušený vlnovod

VInovod s "poruchou" (hranolem)

 $\varepsilon_{c} \xrightarrow{\varepsilon_{p}} R_{c}'(N)$ $\varepsilon_{c} \xrightarrow{\varepsilon_{g}} R_{s}(N)$

'porušený' vlnovod:

Disperzní rovnice: neporušený vlnovod:

$$R_{s}(N_{0})R_{c}(N_{0})e^{2ik_{0}d\sqrt{\varepsilon_{g}-N^{2}}} = 1 \qquad R_{s}(N)R_{c}'(N)e^{2ik_{0}d\sqrt{\varepsilon_{g}-N^{2}}} = 1$$

$$S_{0}(N) = 2k_{0}d\sqrt{\varepsilon_{g}-N^{2}} - 2\arctan\left[\left(\frac{\varepsilon_{g}}{\varepsilon_{s}}\right)^{\nu}\sqrt{\frac{N^{2}-\varepsilon_{s}}{\varepsilon_{g}-N^{2}}}\right] - 2\arctan\left[\left(\frac{\varepsilon_{g}}{\varepsilon_{c}}\right)^{\nu}\sqrt{\frac{N^{2}-\varepsilon_{c}}{\varepsilon_{g}-N^{2}}}\right] - 2m\pi$$

$$= 2k_{0}d\sqrt{\varepsilon_{g}-N^{2}} + i\left[\ln R_{s}(N) + \ln R_{c}(N)\right] - 2m\pi = 0, \quad \text{řešení je } N_{0}: \quad S_{0}(N_{0}) = 0$$

"Porušený" vlnovod (s hranolem v blízkosti povrchu):

$$S(N) = 2k_0 d\sqrt{\varepsilon_g - N^2} + i \left[\ln R_s(N) + \ln R_c'(N) \right] - 2m\pi = 0, \quad \text{řešení je } N: \quad S(N) = 0$$

 $R'_{c}(N)$ je výsledný činitel odrazu od "porušené" vlnovodné struktury.

Jednoduchá poruchová teorie pro planární vlnovod II

$$S_{0}(N_{0}) = 2k_{0}d\sqrt{\varepsilon_{g} - N_{0}^{2}} + i\left[\ln R_{s}(N_{0}) + \ln R_{c}(N_{0})\right] - 2m\pi = 0, \quad \text{neporušená rovnice}$$

$$S(N) = S(N_{0} + \Delta N) \approx S(N_{0}) + (dS / dN)\Big|_{N_{0}} \Delta N; \quad \text{porušená" rovnice v 1. aprox}$$

$$2k_{0}d\sqrt{\varepsilon_{g} - N_{0}^{2}} + i\left[\ln R_{s}(N_{0}) + \ln R_{c}'(N_{0})\right] - 2m\pi + (dS / dN)\Big|_{N_{0}} \Delta N;$$

$$\frac{S_{0}(N_{0})}{0} + i\left[\ln R_{c}'(N_{0}) - \ln R_{c}(N_{0})\right] + (dS_{0} / dN)\Big|_{N_{0}} \Delta N = 0, \quad \text{derivaci aproximujeme}$$

$$pomocí S_{0}$$

$$\Delta N \approx -i\left[\ln R_{c}'(N_{0}) - \ln R_{c}(N_{0})\right] / (dS_{0} / dN)\Big|_{N_{0}}$$

$$L = -\frac{1}{k_{0}} \frac{dS_{0}}{dN}\Big|_{N_{0}} \quad \text{perioda šíření" ve vlnovodu ("Goosův-Hänchenův posuv");}$$

$$\ln R_{c}' = \ln \left|R_{c}'\right| + i \arg R_{c}',$$

$$\Delta N \approx \left\{ \left[\arg\{R_c(N_0)\} - \arg\{R_c'(N_0)\} \right] - i \ln \left| R_c'(N_0) \right| \right\} / (k_0 L)$$

změna ef. indexu lomu vlivem malé poruchy

Fyzikální interpretace metody

VInovod s poruchou

$$\Delta \varphi \approx \arg\{R'_c(N_0)\} - \arg\{R'_c(N_0)\}\$$

změna fáze vlivem změny činitele odrazu

$$R_{s}(N_{0})R_{c}(N_{0})e^{2ik_{0}d\sqrt{\varepsilon_{g}-N_{0}^{2}}} = 1$$
$$R_{s}(N)R_{c}'(N)e^{2ik_{0}d\sqrt{\varepsilon_{g}-N^{2}}} = 1$$

$$e^{ik_0\Delta NL} = e^{i\Delta\varphi_c} e^{\ln\left|R_c'\right|} = \left|R_c'\right| e^{i\Delta\varphi}$$

Při šíření na vzdálenost "jedné periody" se fáze vlny změní o $\Delta \varphi_c$ a amplituda $|R'_c|$ krát

 $|R_c'|$ změna amplitudy pole při jednom odrazu

Šíření optického záření v zakřivených vlnovodech

Každý zakřivený dielektrický vlnovod vyzařuje

Fázová rychlost vlny lineárně roste s poloměrem; pro velké poloměry by překročila rychlost světla v substrátu. Odpovídající část přenášeného výkonu je vyzářena do okolí

$$v(r) = v(R+\rho) = \left(1+\frac{\rho}{R}\right)v(R) \le \frac{c}{n_s}$$

$$N = N' + i N'', \quad N'' > 0,$$

exp(*i* k₀Nz) = exp(*i*k₀N'z) exp(-k₀N''z)

Záření Čerenkovova typu ("rychlá" vlna). Pomocí poruchové metody je možno ukázat, že

$$N'' \approx 2 \frac{\sqrt{N^2 - n_s^2} \left(n_g^2 - N^2\right)}{k_0 N d \left(n_g^2 - n_s^2\right)} \exp\left[-\frac{2}{3} k_0 R \frac{\left(N^2 - n_s^2\right)^{3/2}}{n_s^2}\right]$$

Metody analýzy zak**ř**ivených vlnovodů Metoda konformního zobrazení pro 2D (planární) vlnovod

Přímý vlnovod:

$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial z^2} + k_0^2 n^2(x) E = 0$$
$$E(x, z) = E(x) \exp(ik_0 Nz)$$

Zakřivený vlnovod:

$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} + k_0^2 n^2(r) E = 0$$

$$r = \sqrt{x^2 + y^2}, \quad x = r \cos \varphi, \quad y = r \sin \varphi$$
Komplexní proměnná $z = x + iy = re^{i\varphi}$
Konformní zobrazení $w = u + iv$

$$w = u + iv = R \ln \frac{z}{R} = R \ln \frac{r}{R} + iR\varphi,$$

$$u = R \ln \frac{r}{R}, \quad v = R\varphi$$

$$\frac{r}{R} = \exp\left(\frac{u}{R}\right), \quad \varphi = \frac{v}{R}$$
M Heiblum and L h

M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," *IEEE Journal of Quantum Electronics*, vol. QE-11, pp. 75-83, 1975.

Metoda konformního zobrazení pro 2D (planární) vlnovod

Rigorózní řešení vlnové rovnice zakřiveného 2D vlnovodu

Polarizace: $E \parallel x^0$; $\frac{\partial}{\partial x} \equiv 0$ (kolmo k rovině zakřivení) $\mathsf{E}(r,\varphi) = E_{\mathsf{x}}(r,\varphi) \,\mathsf{x}^{0} = \psi(r) \exp(i\nu\varphi) \,\mathsf{x}^{0}$ Vlnová rovnice (z Maxwellových rovnic) $\nabla \times \nabla \times \mathsf{E} = \nabla \underbrace{\nabla \cdot \mathsf{E}}_{0} - \Delta \mathsf{E} = -k_{0}^{2}n^{2}(r) \mathsf{E},$ $\Delta_{\perp}E_{\star} + k_0^2 n^2(r)E_{\star} = 0$ **Besselova rovnice** $r\frac{d}{dr}\left(r\frac{d\psi(r)}{dr}\right) + \left(k_0^2n^2r^2 - \nu^2\right)\psi(r) = 0,$ prstenec: $n(r) = \begin{cases} n_{1'}, r \leq r_{1'}, \\ n_{2'}, r_{1} < r \leq r_{2'}, \\ n_{3'}, r > r_{2} \end{cases}$ disk: $n(r) = \begin{cases} n_{2'} & r \le r_2 \\ n_{3'} & r > r_2 \end{cases}$

Zakřivený vlnovod, nebo mikrorezonátor?

Rigorózní řešení rovnice pro 2D prstencový a diskový mikrorezonátor

Numerické problémy:

. . .

v blízkosti rezonance, pro $r \approx R$, $\omega \doteq \nu c / Rn_{2'}$, $k_0 n_2 r = n_2 \rho \approx \nu$;

Programy pro výpočet cylindrických funkcí pro reálné i komplexní argumenty selhávají pro (velké) argumenty blízké řádu cylindrické funkce.

Řešení: napsat vlastní program (doktorand L. Prkna, obhájil 2004)

Základ: Uniformní asymptotický rozvoj M. Abramovitz, I. A. Stegun, *Handbook of mathematical functions*, Applied mathematics series – 55, NBS, Boulder, 1964 L. Prkna, PhD práce, MFF UK 2004 Kiran Hiremath, PhD práce, Uni Twente, 2005

"FMM mode solver" pro zakřivené vlnovody

Přístup velmi podobný jako u přímých vlnovodů; *radiální* závislost místo *laterální*.

Problém: *Cylindrické* funkce místo trigonometrických.

- 1. rozdělení struktury na radiálně homogenní úseky ("řezy"), každý řez je považován za multivrstvu.
- 2. Pole v každém řezu je vyjádřeno pomocí TE a TM vidů multivrstvy.
- 3. Na rozhraní mezi řezy jsou aplikovány podmínky spojitosti tečných složek.
- Žádná (nebo malá) diskretizace
- Pole v každém řezu je popsáno analyticky

Příklad rozložení pole v mikrorezonátoru s velkým kontrastem indexu lomu (SOI)

Si/SiO₂ prstencový mikrorezonátor,

 $R = 2 \ \mu m$, $n_{Si} = 3.5$, $n_{SiO_2} = 1.45$, $n_a = 1$, $\lambda = 1.55 \ \mu m$, $h = 360 \ nm$, $w = 500 \ nm$.

Složit**ě**jší vlnovodné struktury: rigorózní formulace metody vázaných vidů

Výpočet pole v obecné vlnovodné struktuře pomocí rozkladu ve vlastní vidy podélně homogenního vlnovodu

1. Vlastní vidy vlnovodu s permitivitou $\varepsilon^{(0)}(x, y)$: Ortogonalita a úplnost spektra vlastních vidů $E_{\mu}(x, y, z) = A_{\mu}e_{\mu}(x, y)e^{i\beta_{\mu}z},$ $H_{\mu}(x, y, z) = A_{\mu}h_{\mu}(x, y)e^{i\beta_{\mu}z}$

$$\frac{1}{2} \iint_{S} \mathbf{e}_{\mu} \times \mathbf{h}_{\nu} \cdot d\mathbf{S} = \frac{1}{2} \iint_{S} \mathbf{e}_{\mu\perp} \times \mathbf{h}_{\nu\perp} \cdot d\mathbf{S} = \frac{\beta_{\mu}}{|\beta_{\mu}|} \delta_{\mu\nu}$$

- 2. Obecný vlnovod s permitivitou $\varepsilon(x, y, z)$: $E_{\perp}(x, z, y) = \sum_{\mu} [a_{\mu}(z) e_{\mu \perp}(x, y) + b_{\mu}(z) e_{\mu \perp}(x, y)],$ $H_{\perp}(x, z, y) = \sum_{\mu} [a_{\mu}(z) h_{\mu \perp}(x, y) - b_{\mu}(z) h_{\mu \perp}(x, y)],$
- 3. Přesné řešení vede na soustavu diferenciálních rovnic 1. řádu $\frac{da_{\mu}(z)}{dz} = i\beta_{\mu}a_{\mu}(z) + \sum_{\nu} \left[K_{\mu\nu}^{++}(z)a_{\nu}(z) + K_{\mu\nu}^{+-}(z)b_{\nu}(z) \right],$ $\frac{db_{\mu}(z)}{dz} = i\beta_{\mu}a_{\mu}(z) + \sum_{\nu} \left[i(z) + \sum_{$

$$\frac{du_{\mu}(z)}{dz} = -i\beta_{\mu}b_{\mu}(z) + \sum_{\nu} \Big[K_{\mu\nu}^{-+}(z)a_{\nu}(z) + K_{\mu\nu}^{--}(z)b_{\nu}(z)\Big].$$

Rovnice pro pomalu proměnné amplitudy

$$a_{\mu}(z) = A_{\mu}(z)e^{i\beta_{\mu}z}, \qquad b_{\mu}(z) = B_{\mu}(z)e^{-i\beta_{\mu}z}.$$
$$\frac{da_{\mu}}{dz} = e^{i\beta_{\mu}z}\frac{dA_{\mu}}{dz} + i\beta_{\mu}a_{\mu}, \qquad \frac{db_{\mu}}{dz} = e^{-i\beta_{\mu}z}\frac{dB_{\mu}}{dz} - i\beta_{\mu}b_{\mu}.$$

Dosazením získáme

$$\frac{dA_{\mu}}{dz} = \sum_{\nu} \left[K_{\mu\nu}^{++}(z) e^{-i(\beta_{\mu}-\beta_{\nu})z} A_{\nu}(z) + K_{\mu\nu}^{+-}(z) e^{-i(\beta_{\mu}+\beta_{\nu})z} B_{\nu}(z) \right],\\ \frac{dB_{\mu}}{dz} = \sum_{\nu} \left[K_{\mu\nu}^{-+}(z) e^{i(\beta_{\mu}+\beta_{\nu})z} A_{\nu}(z) + K_{\mu\nu}^{--}(z) e^{i(\beta_{\mu}-\beta_{\nu})z} B_{\nu}(z) \right].$$

$$\begin{aligned} & \mathcal{K}_{\mu\nu}^{pq} = p\mathcal{K}_{\mu\nu} + qk_{\mu\nu'}, \quad p, q = 1 \text{ nebo } -1, \\ & \mathcal{K}_{\mu\nu}\left(z\right) = \frac{i\omega\varepsilon_{0}}{4} \frac{\left|\beta_{\mu}\right|}{\beta_{\mu}} \int_{S} \int_{S} \left[\varepsilon\left(x, z, y\right) - \varepsilon^{\left(0\right)}\left(x, y\right)\right] \mathbf{e}_{\mu\perp} \cdot \mathbf{e}_{\nu\perp} dx dy, \\ & k_{\mu\nu}\left(z\right) = \frac{i\omega\varepsilon_{0}}{4} \frac{\left|\beta_{\mu}\right|}{\beta_{\mu}^{*}} \int_{S} \frac{\varepsilon^{\left(0\right)}\left(x, y\right)}{\varepsilon\left(x, y, z\right)} \left[\varepsilon\left(x, z, y\right) - \varepsilon^{\left(0\right)}\left(x, y\right)\right] \mathbf{e}_{\mu z} \cdot \mathbf{e}_{\nu z} dx dy, \end{aligned}$$

"Bornovo přiblížení" – aproximativní řešení

Soustavu rovnic zkusíme integrovat:

$$\int_{0}^{z} \frac{dA_{\mu}}{dz} dz \approx \int_{0}^{z} \sum_{\nu} \left[\kappa_{\mu\nu}^{++}(z) e^{-i(\beta_{\mu}-\beta_{\nu})z} A_{\nu}(z) + \kappa_{\mu\nu}^{+-}(z) e^{-i(\beta_{\mu}+\beta_{\nu})z} B_{\nu}(z) \right] dz,$$

$$\int_{0}^{z} \frac{dB_{\mu}}{dz} dz \approx \int_{0}^{z} \sum_{\nu} \left[\kappa_{\mu\nu}^{-+}(z) e^{i(\beta_{\mu}+\beta_{\nu})z} A_{\nu}(z) + \kappa_{\mu\nu}^{--}(z) e^{i(\beta_{\mu}-\beta_{\nu})z} B_{\nu}(z) \right] dz,$$

Za předpokladu, že amplitudy se mění pomalu, pro nevelké z přibližně platí

$$\begin{split} \mathcal{A}_{\mu}(z) &\approx \mathcal{A}_{\mu}(0) + \sum_{\nu} \Bigg[\mathcal{A}_{\nu}(0) \int_{0}^{z} \mathcal{K}_{\mu\nu}^{++}(z) e^{-i\left(\beta_{\mu}-\beta_{\nu}\right)^{z}} dz + \mathcal{B}_{\nu}(0) \int_{0}^{z} \mathcal{K}_{\mu\nu}^{+-}(z) e^{-i\left(\beta_{\mu}+\beta_{\nu}\right)^{z}} dz \\ \mathcal{B}_{\mu}(z) &\approx \mathcal{B}_{\mu}(0) + \sum_{\nu} \Bigg[\mathcal{A}_{\nu}(0) \int_{0}^{z} \mathcal{K}_{\mu\nu}^{-+}(z) e^{i\left(\beta_{\mu}+\beta_{\nu}\right)^{z}} dz + \mathcal{B}_{\nu}(0) \int_{0}^{z} \mathcal{K}_{\mu\nu}^{--}(z) e^{i\left(\beta_{\mu}-\beta_{\nu}\right)^{z}} dz \Bigg]. \end{split}$$

Integrály jsou "významně nenulové", pouze pokud integrované funkce neoscilují rychle.

Rovnice vázaných vln pro pomalu proměnné amplitudy

Zjednodušme soustavu rovnic ponecháním pouze členů splňujících podmínku fázového synchronismu:

$$\frac{dA_{\mu}}{dz} \approx K_{\mu\nu}^{++}(z)e^{-i\left(\beta_{\mu}-\beta_{\nu}\right)z}A_{\nu}(z)$$

Pro pomalu proměnné amplitudy přibližně platí $A_{\nu}(0) \approx A_{\nu}(0)$.

Položme dále
$$\beta_{\mu} - \beta_{\nu} \approx \beta_{\mu} \left(\omega_{0}\right) - \beta_{\nu} \left(\omega_{0}\right) + \frac{d}{d\omega} \left[\beta_{\mu} \left(\omega\right) - \beta_{\nu} \left(\omega\right)\right] \left(\omega - \omega_{0}\right)$$

 $\approx \beta_{\mu} \left(\omega_{0}\right) - \beta_{\nu} \left(\omega_{0}\right) + \frac{N_{\mu g} - N_{\nu g}}{c} \left(\omega - \omega_{0}\right).$

Pak pokud $\beta_{\mu 0} = \beta_{\nu 0}$

$$T(z) = \frac{A_{\mu}(z)}{A_{\nu}(0)} \approx \int_{0}^{z} K_{\mu\nu}^{++}(z') e^{-i\left(\beta_{\mu}-\beta_{\nu}\right)z'} dz' \approx \int_{0}^{z} K_{\mu\nu}^{++}(z') e^{-i\left[\frac{N_{\mu g}-N_{\nu g}}{c}(\omega-\omega_{0})\right]z'} dz'.$$

Spektrální charakteristika přenosu je přibližně dána Fourierovou transformací podélné závislosti činitele vazby

Vzájemná vazba dvou vln

Pro vazební délku podstatně delší než je délka záznějů mezi vidy se uplatní pouze členy blízké fázovému synchronismu:

Pro "dopřednou" vazbu

$$\frac{dA_{\mu}}{dz} = K_{\mu\mu}^{++}(z)A_{\mu}(z) + K_{\mu\nu}^{++}(z)e^{-i(\beta_{\mu}-\beta_{\nu})z}A_{\nu}(z),$$

$$\frac{dA_{\nu}}{dz} = K_{\nu\mu}^{++}(z)e^{i(\beta_{\mu}-\beta_{\nu})z}A_{\mu}(z) + K_{\nu\nu}^{++}(z)A_{\nu}(z),$$

Pro "zpětnou" vazbu

$$\frac{dA_{\mu}}{dz} = K_{\mu\mu}^{++}(z)A_{\mu}(z) + K_{\mu\nu}^{+-}(z)e^{-i(\beta_{\mu}+\beta_{\nu})z}B_{\nu}(z)$$
$$\frac{dB_{\nu}}{dz} = K_{\nu\mu}^{-+}(z)e^{i(\beta_{\mu}+\beta_{\nu})z}A_{\mu}(z) + K_{\nu\nu}^{--}(z)B_{\nu}(z)$$

Aproximativní metoda vázaných vidů

Dvojice vázaných vlnovodů Vidy nejsou ortogonální!

$$E(x, y, z) \approx a_1(z)e_1(x, y) + a_2(z)e_2(x, y)$$

$$\frac{da_1}{dz} = i\beta_1 a_1 (z) + i\kappa_{12} a_2 (z) \qquad \text{Zachování výkonu v}$$
$$\frac{da_2}{dz} = i\kappa_{21} a_1 (z) + i\beta_2 a_2 (z) \qquad \frac{d}{dz} (a_1 a_1^* + a_2 a_2^*) =$$

bezeztrátové struktuře:

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(a_1 a_1^* + a_2 a_2^* \right) = 0 \quad \Rightarrow \quad \kappa_{21} = \kappa_{12}^*$$

$$a_{1}(z) = a_{1}(0)e^{i\frac{\beta_{1}+\beta_{2}}{2}z} \left[\cos \delta z - i(\Delta \beta / 2)\sin \delta z\right], \qquad \delta = \sqrt{(\Delta \beta / 2)^{2} + |\kappa_{12}\kappa_{21}|},$$

$$a_{2}(z) = ia_{1}(0)\frac{\kappa}{\delta}e^{i\frac{\beta_{1}+\beta_{2}}{2}z}\sin \delta z; \qquad P_{d}(z) = |a_{1}(0)|^{2}\left|\frac{\kappa}{\delta}\right|^{2}\sin^{2} \delta z.$$

Problém: neexistuje jednoznačný způsob výpočtu činitele vazby (úloha není exaktně formulována!) Exaktní řešení ukážeme později.

Aplikace teorie vázaných vidů: konverze vidů na vlnovodné mřížce

$$K_{\mu\nu}^{pq}(z) = \sum_{m} K_{\mu\nu,m}^{pq} e^{imKz}, \quad K = \frac{2\pi}{\Lambda} \qquad \beta_d \approx \beta_i \pm mK$$

Pro $m = 1$

$$\frac{dA_{i}}{dz} = i\kappa e^{i\Delta\beta z}A_{d}(z), \quad \Delta\beta = \beta_{d} - \beta_{i} - K$$
$$\frac{dA_{d}}{dz} = i\kappa^{*}e^{-i\Delta\beta z}A_{i}(z), \quad \kappa = iK_{d,i,1}^{++}$$

Řešení s počáteční podmínkou $A_{i}(0) = A_{i0}, A_{d}(0) = 0$ je

$$A_{i}(z) = A_{i,0}e^{i\frac{\Delta\beta}{2}z}\left[\cos\delta z - i\left(\Delta\beta/2\delta\right)\sin\delta z\right], \qquad \delta = \sqrt{\left(\Delta\beta/2\right)^{2} + \left|\kappa\right|^{2}}.$$
$$A_{d}(z) = iA_{i,0}\frac{\kappa}{\delta}e^{-i\frac{\Delta\beta}{2}z}\sin\delta z; \qquad \left|A_{d}(z)\right|^{2} = \left|A_{i0}\right|^{2}\left|\frac{\kappa}{\delta}\right|^{2}\sin^{2}\delta z.$$

Pro $\Delta \beta = 0 |A_{d}(z)|^{2} = |A_{i0}|^{2} \sin |\kappa| z$

Účinnost může být teoreticky 100%

Spektrální závislost konverze vidů na mřížce

"Dlouhá" mřížka s malým činitelem vazby má úzkou spektrální křivku konverzní účinnosti

Zpětný (braggovský) odraz na mřížce

$$eta_{d} pprox eta_{i} \pm mK; \quad eta_{d} pprox eta_{i} - K pprox -eta_{i}$$
 $K pprox 2eta_{i}$

$$\frac{dA_i}{dz} = i\kappa e^{-i\Delta\beta z}B_d(z), \quad \Delta\beta = \beta_d + \beta_i - K \qquad \text{ \r{R}eseni s okrajovými podmínkami}}$$
$$\frac{dB_d}{dz} = -i\kappa^* e^{i\Delta\beta z}A_i(z), \quad \kappa = iK_{d,i,1}^{++}, \qquad A_i(0) = A_{i0}, \quad B_d(L) = 0 \quad \text{je}$$

$$A_{i}(z) = \delta A_{i,0} \left[\delta \cosh \delta z - i \left(\Delta \beta / 2 \right) \sinh \delta z \right]^{-1}, \quad \delta = \sqrt{\left| \kappa \right|^{2} - \left(\Delta \beta / 2 \right)^{2}}.$$
$$B_{d}(z) = i \kappa^{*} A_{i,0} e^{-i \frac{\Delta \beta}{2} z} \left[\delta \coth \delta z - i \frac{\Delta \beta}{2} \right]^{-1}$$
Pro $\Delta \beta = 0$

$$\left|R\right|^{2} = \left|\frac{B_{d}(0)}{A_{i0}}\right|^{2} = \left|\frac{\kappa \sinh \delta L}{\delta \cosh \delta L - i(\Delta \beta / 2) \sinh \delta L}\right|^{2}$$

 $\left|R^{2}\right| = \tanh^{2}|\kappa|L.$

Spektrální závislost účinnosti zpětného odrazu

Úzká spektrální křivka konverzní účinnosti vyžaduje malý činitel vazby a dlouhou mřížku

Metody "šíření optického svazku" (BPM)

Metody pro výpočet rozložení pole optického záření ve složitějších podélně nehomogenních vlnovodných strukturách

Složitější vlnovodná struktura

Rozložení optického záření

Princip metody FFT BPM

Předpokládáme, že rozložení pole je popsáno Helmholtzovou vlnovou rovnicí (zanedbáváme vektorový charakter pole, aproximace pro "slabě vedoucí" vlnovody

 $\Delta E + k_0^2 n^2 (x, y, z) E = 0$

Upravíme na tvar

neboli

$$\frac{\partial^2 E}{\partial z^2} = -\left[\Delta_{\perp} E + k_0^2 n^2 (x, y, z) E\right] = -\mathbb{L}^2 E$$
$$\frac{\partial E}{\partial z} = \pm i \mathbb{L} E = \pm i \sqrt{\Delta_{\perp} + k_0^2 n^2 (x, y, z)} E$$

Formální řešení: $E(x, y, z + \Delta z) = \exp(i\Delta z \mathbb{L})E(x, y, z)$

Volba znaménka určuje směr šíření vlny!

Problém: co je to $\mathbb{L} = \sqrt{\Delta_{\perp} + k_0^2 n^2(x, y, z)}$ a jak to spočítat?

Operátory $\Delta_{\perp} = k_0^2 n^2 (x, y, z)$ vzájemně nekomutují!

Předpokládejme, že optická nehomogenita prostředí je slabá,

$$n^{2}(\mathbf{x},\mathbf{y},\mathbf{z}) = \varepsilon_{s} + \Delta\varepsilon(\mathbf{x},\mathbf{y},\mathbf{z}), \qquad \Delta\varepsilon \ll \varepsilon_{s}, \qquad \Delta_{\perp} \ll k_{0}^{2}\varepsilon_{s}$$

Pak

$$\mathbb{L} = \sqrt{k_0^2 \varepsilon + \Delta_{\perp}} = \sqrt{k_0^2 \varepsilon_s + \Delta_{\perp} + k_0^2 \Delta \varepsilon} \cong \sqrt{k_0^2 \varepsilon_s + \Delta_{\perp}} + k_0 \Delta n(x, y, z)$$

Ukážeme, že operátor $\exp(i\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}z)$ popisuje *šíření vlny*

v homogenním prostředí s indexem lomu $n_s = \sqrt{\varepsilon_s}$: Nechť

$$E(x, y, z = 0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(k_x, k_y, z = 0) \exp\left[i(k_x x + k_y y)\right] dk_x dk_y,$$

$$F(k_x, k_y, z = 0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E(x, y, z = 0) \exp\left[-i(k_x x + k_y y)\right] dx dy$$

Pak

$$E(x, y, z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(k_x, k_y, z = 0) \exp\left(i\sqrt{k_0^2\varepsilon_s - k_x^2 - k_y^2}z\right) \exp\left[i\left(k_x x + k_y y\right)\right] dk_x dk_y$$

neboli $F\left(k_{x},k_{y},z\right) = \exp\left(i\sqrt{k_{0}^{2}\varepsilon_{s}-k_{x}^{2}-k_{y}^{2}}z\right)F\left(k_{x},k_{y},z=0\right),$ $F\left(k_{x},k_{y},z\right) = \exp\left(i\mathbb{L}z\right)F\left(k_{x},k_{y},z=0\right).$

Šíření vlny v homogenním prostředí s indexem lomu n_s

popisuje tedy ve spektrální oblasti operace násobení

$$F(k_x, k_y, z) = \exp\left(i\sqrt{k_0^2\varepsilon_s - k_x^2 - k_y^2}z\right)F(k_x, k_y, z = 0), \quad n_s = \sqrt{\varepsilon_s}$$

Formálně můžeme tedy psát

$$E(x, y, z) = \exp\left(i\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}z\right)E(x, y, z = 0)$$

My ale potřebujeme spočítat
$$\exp\left\{i\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}} + k_0\Delta n(x, y, z)\right]z\right\}.$$

Operátory $\sqrt{k_0^2 \varepsilon_s + \Delta_{\perp}}$ a $k_0 \Delta n(x, y)$ vzájemně nekomutují, proto

$$\exp\left\{i\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}} + k_0\Delta n(x, y, z)\right]z\right\} \neq \exp\left\{i\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}\right]z\right\}\exp\left[ik_0\Delta n(x, y, z)z\right]$$

Použijeme tzv. "operator splitting" method: při šíření na malou vzdálenost Δz

$$\exp\left\{i\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}} + k_0\Delta n(x, y, z)\right]\Delta z\right\} \cong$$
$$\cong \exp\left\{\frac{i}{2}\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}\right]\Delta z\right\}\exp\left[ik_0\Delta n(x, y, z)\Delta z\right]\exp\left\{\frac{i}{2}\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}\right]\Delta z\right\}$$

Aproximace platí tím lépe, čím menší je krok Δz .

Dá se ukázat, že chyba je úměrná $\left(\Delta z\right)^2$.

Zjemňování dělení operátoru je identické se zmenšováním kroku Δz .

Jednoduchá fyzikální interpretace algoritmu:

$$\underbrace{\exp\left\{\frac{i}{2}\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}\right]\Delta z\right\}}_{\text{siffeni v homog. prostředí na vzdálenost }\Delta z} \underbrace{\exp\left[ik_0\Delta n\left(x,y,z\right)\Delta z\right]}_{\text{fázová korekce}} \underbrace{\exp\left\{\frac{i}{2}\left[\sqrt{k_0^2\varepsilon_s + \Delta_{\perp}}\right]\Delta z\right\}}_{\text{siffeni v homog. prostředí na vzdálenost }\Delta z}$$

To je princip metody šíření optického svazku založené na rychlé Fourierově transformaci (označované jako FFT BPM)

Šíření ve volném prostoru: přechod do spektrální oblasti pomocí FFT, násobení faktorem $\exp(i\sqrt{k_0^2\varepsilon_s - k_x^2 - k_y^2}\Delta z/2)$, zpětná FFT Fázová korekce: násobení faktorem $\exp[ik_0\Delta n(x, y, z)\Delta z]$

atd., atd....

Výhody (pro 2D): relativní jednoduchost, rychlost Nevýhody: použitelno pouze pro "paraxiální" struktury s omezeným úhlovým spektrem

Princip metody konečných diferencí (FD)

Metoda konečných diferencí: diskretizace, přechod od derivace k diferenci

$$U(x) \rightarrow u_{m} = U(x_{m}), \quad j = 1...M, \quad x_{j} = x_{0} + m\Delta x$$

$$\frac{dU}{dx} \cong \frac{u_{m+1} - u_{m-1}}{2\Delta x}, \quad D^{(1)} = \frac{1}{2\Delta x} \begin{pmatrix} \dots & 1 & 0 & 0 & \dots \\ -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ \dots & 0 & 0 & -1 & \dots \end{pmatrix}$$

$$\frac{d^2 U}{dx^2} \cong \frac{u_{m+1} - 2u_m + u_{m-1}}{\left(\Delta x\right)^2},$$
$$u'' = \mathsf{D}^{(2)} \cdot \mathsf{u}$$

$$\mathsf{D}^{(2)} = \frac{1}{\left(\Delta x\right)^2} \begin{pmatrix} \dots & 1 & 0 & 0 & \dots \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ \dots & 0 & 0 & 1 & \dots \end{pmatrix}$$

FD BPM

Rovnice pro vlastní vidy jako problém vlastních čísel maticového operátoru

$$\frac{d^2}{dx^2}E + k_0^2 [n^2(x) - N^2]E = 0 \rightarrow \{ \mathsf{D}^{(2)} + k_0^2 [\mathsf{n}^2 - N^2\mathsf{I}] \} \cdot \mathsf{E} = 0, (\mathsf{D}^{(2)} + k_0^2\mathsf{n}^2) \cdot \mathsf{E} = N^2\mathsf{I} \cdot \mathsf{E}$$

"Fresnelova" aproximace:

$$\begin{split} \frac{\partial^2 E}{\partial z^2} &= -\left[\Delta_{\perp} E + k_0^2 n^2 (x, y, z) E\right] = -\mathbb{L}^2 E\\ \mathsf{D}_z \cdot \mathsf{E} &= i \sqrt{\mathsf{D}_{\perp}^{(2)} + k_0^2 n^2 \mathsf{I}} \cdot \mathsf{E} = i \mathsf{L} \cdot \mathsf{E} \qquad \mathsf{L} \quad \text{je nyn} i \text{ matice}\\ \mathsf{L} &= \sqrt{\mathsf{D}_{\perp}^{(2)} + k_0^2 n^2} \cong \sqrt{\mathsf{D}_{\perp}^{(2)} + k_0^2 n_s^2 \mathsf{I}} + \frac{1}{2} k_0 \left(\sqrt{\mathsf{D}_{\perp}^{(2)} + k_0^2 n_s^2 \mathsf{I}}\right)^{-1} \cdot \Delta n \mathsf{I},\\ \mathsf{L}_0 &= \sqrt{\mathsf{D}_{\perp}^{(2)} + k_0^2 n_s^2 \mathsf{I}}, \quad \mathsf{L} \cong \mathsf{L}_0 + \frac{1}{2} k_0 \mathsf{L}_0^{-1} \cdot \Delta n \mathsf{I} \end{split}$$

Omezení na "paraxiální" šíření v důsledku "Fresnelovy" aproximace

Padého aproximace

 $\frac{\partial^2 E}{\partial z^2} + \left[\Delta_{\perp} + k_0^2 n^2(x, y, z)\right] E = 0; \quad \text{volme } E(x, y, z) = \exp\left(ik_0 n_0 z\right) \Psi(x, y, z)$ $\Psi(x, y, z) \dots \text{ pomalu proměnná amplituda"}$

$$\mathsf{Pak} \quad \frac{\partial^2 \Psi}{\partial z^2} + 2ik_0 n_0 \frac{\partial \Psi}{\partial z} + \mathcal{Q}\Psi = 0, \qquad \mathcal{Q} = \mathcal{L} - k_0^2 n_0^2 = \Delta_\perp + k_0^2 \left(n^2 - n_0^2\right)$$

v symbolickém operátorovém vyjádření

$$\frac{\partial}{\partial z} - i\alpha \frac{\partial^2}{\partial z^2} = i\alpha \mathcal{Q}, \quad \alpha = \frac{1}{2k_0 n_0},$$

neboli

Padého aproximace vychází z formálního vyjádření

3.

 $\frac{\partial}{\partial z} \left(1 - i\alpha \frac{\partial}{\partial z} \right) = i\alpha \mathcal{Q}.$

$$\frac{\partial}{\partial z} = i\alpha \mathcal{Q} \left(1 - i\alpha \frac{\partial}{\partial z} \right)^{-1}$$

atd.

a postupné substituce. Padého aproximace 2. řádu

Fádu:
$$\frac{\partial}{\partial z} \approx i \alpha \mathcal{Q} \left(1 + \alpha^2 \mathcal{Q} \right)^{-1}$$
,
řádu $\frac{\partial}{\partial z} \approx i \alpha \mathcal{Q} + i \alpha^3 \mathcal{Q}^2 \left(1 + 2\alpha^2 \mathcal{Q} \right)^{-1}$

Ve FD aproximaci je *Q* maticový operátor, takže je ho možno explicitně vyjádřit. Předchozí vztahy představují parabolické rovnice, které lze relativně snadno řešit. Postup je možno aplikovat i na vektorové rovnice \Rightarrow *vektorové metody BPM*

Alternativní metody BPM (skalární aproximace)

Metoda obousměrného rozkladu ve vlastní vidy (BEP): ("rigorózní" *vektorová* metoda)

1. Výpočet vlastních vidů v homogenním úseku

$$\frac{d^{2s}f_m(x)}{dx^2} + k_0^2 \left[{}^s \varepsilon(x) - {}^s N_m^2 \right] {}^s f_m(x) = 0 \qquad \text{pr}$$

$$\varepsilon \frac{d}{dx} \left(\frac{1}{\varepsilon} \frac{d^s f_m(x)}{dx} \right) + k_0^2 \left[{}^s \varepsilon(x) - {}^s N_m^2 \right] {}^s f_m(x) = 0 \qquad \text{pr}$$

pro TE polarizaci

pro TM polarizaci

Řešení metodou přenosových matic (příčné rezonance)

2. Zavedení (příčné) immitance (impedance)

 ${}^{s}q(z) = {}^{s}u(z) \cdot {}^{s}p(z)$

3. Šíření v homogenním úseku jako transformace immitance (lze odvodit z metody přenosové matice po delších úpravách)

$${}^{s}\mathbf{u}(z + \Delta z) = -i\left[\tan\left(k_{0}{}^{s}\mathsf{N}\Delta z\right)\right]^{-1} + \left[\sin\left(k_{0}{}^{s}\mathsf{N}\Delta z\right)\right]^{-1} \cdot \left[sin\left(k_{0}{}^{s}\mathsf{N}\Delta z\right)\right]^{-1} \cdot \left[sin\left(k_{0}{}^{s}\mathsf{N}\Delta z\right)\right]^{-1} \cdot \left[sin\left(k_{0}{}^{s}\mathsf{N}\Delta z\right)\right]^{-1} \cdot sp(z) = i\left[{}^{s}\mathbf{u}(z) + i\cot(k_{0}{}^{s}\mathsf{N}\Delta z)\right]^{-1} \cdot \left[sin(k_{0}{}^{s}\mathsf{N}\Delta z)\right]^{-1} \cdot sp(z)$$

4. Přechod mezi homogenními úseky

$${}^{a}u = ({}^{a}N)^{-1} \cdot {}^{\underline{a}\underline{b}} O \cdot {}^{b}N \cdot {}^{b}u \cdot {}^{\underline{b}\underline{a}}O, \qquad {}^{b}p = {}^{\underline{b}\underline{a}}O \cdot {}^{a}p,$$
$${}^{b}u = ({}^{b}N)^{-1} \cdot {}^{\underline{b}\underline{a}}O \cdot {}^{a}N \cdot {}^{a}u \cdot {}^{\underline{a}\underline{b}}O. \qquad {}^{b}q = {}^{b}N^{-1} \cdot {}^{\underline{b}\underline{a}}O \cdot {}^{a}N$$

$${}^{\underline{b}a}O_{nm} = \int\limits_{x_{\min}}^{x_{\max}} \frac{{}^{a}f_{m}(x){}^{b}f_{n}(x)}{{}^{b}\varepsilon^{\nu}(x)} dx, \qquad {}^{\underline{b}\underline{a}}O_{nm} = \int\limits_{x_{\min}}^{x_{\max}} \frac{{}^{a}f_{m}(x){}^{b}f_{n}(x)}{{}^{a}\varepsilon^{\nu}(x)} dx$$

5. Výpočet odražené vlny na vstupu struktury

$$^{1}a^{-}(0) = R \cdot {}^{1}a^{+}(0), \qquad \qquad R = \left[{}^{1}u(0) - I\right] \cdot \left[{}^{1}u(0) + I\right]^{-1}$$

6. Výpočet rozložení pole ve struktuře

$${}^{1}p(0) = {}^{s}a^{+}(0) + {}^{s}a^{-}(0);$$
 ${}^{s}q(z) = {}^{s}u(z) \cdot {}^{s}p(z)$

- Immitanční formulace dobrá numerická stabilita metody
- Okrajové podmínky "dokonale přizpůsobené vrstvy"
- Analýza 1D periodické struktury s použitím Floquetova – Blochova teorému

Aplikace na periodické struktury (fotonické krystaly)

Kombinace metody rozvoje ve vlastní vidy s Floquetovým teorémem:

Je-li struktura periodická a ^LA± je přenosová matice jedné periody pro přímý a zpětný průchod, *I*-tý Floquetův-Blochův vid splňuje podmínku

$${}^{\Lambda}\mathsf{A}^{\pm}\cdot\begin{pmatrix}\mathsf{p}'\\\mathsf{q}'\end{pmatrix}=\exp(\pm i\phi')\begin{pmatrix}\mathsf{p}'\\\mathsf{q}'\end{pmatrix}.$$

Jakmile známe Floquetův-Blochův vid a jeho "konstantu šíření" ϕ^{I} , průchod strukturou o *L* periodách je jednoduše popsán vztahem

$${}^{L\Lambda}\mathsf{A}^{\pm}\cdot\begin{pmatrix}\mathsf{p}'\\\mathsf{q}'\end{pmatrix}=\left({}^{\Lambda}\mathsf{A}^{\pm}\right)^{L}\cdot\begin{pmatrix}\mathsf{p}'\\\mathsf{q}'\end{pmatrix}=\exp(\pm iL\phi')\begin{pmatrix}\mathsf{p}'\\\mathsf{q}'\end{pmatrix}.$$

(Formulace pomocí rozptylové matice je numericky stabilnější).

P. Bienstman: CAMFR, camfr. sourceforge.net

Problémy "standardní" metody BEP:

- Pro numerický výpočet je třeba pracovat s konečným počtem vidů, ty však netvoří úplný systém. V různých sekcích jsou navíc tyto systémy různé. To vede k nejednoznačnosti splnění podmínek spojitosti tečných složek polí na rozhraní, k narušení reciprocity a v bezeztrátovém prostředí ke vzniku "numerického útlumu".
- 2. V případě ztrátových materiálů s komplexní permitivitou nebo při použití PML je třeba hledat relativně velký počet vidů, tedy hledat velký počet nul složité komplexní (analytické) funkce v komplexní rovině. Výpočet je časově náročný a jeho urychlení bývá na úkor spolehlivosti (některé nuly se nemusí podařit najít).

Jednoduchá alternativa:

Metoda založená na rozvoji v harmonické funkce:

Metoda Fourierova rozkladu (v rovinné vlny) (Ph. Lalanne)

Periodické okrajové podmínky:

$$f_m(\xi_{\min}) = f(\xi_{\max})$$
$$u_m(\xi) = \frac{1}{\sqrt{X}} \exp\left(i\frac{m\pi}{X}\right), \qquad u'_m = i\frac{m\pi}{X}u_m(\xi)$$

Rozklad do soustavy funkcí (= rovinné vlny)

Fyzikální interpretace: *periodické opakování* struktury Pro neperiodické struktury *oddělení "period" pomocí PML*

Metoda rozkladu ve Fourierovu řadu (2D)

Ortonormované "vidy deskového vlnovodu"

elektricky/magneticky vodivé stěny $u_{m}(\xi) = \sqrt{\frac{2}{X}} \sin\left[\frac{m\pi}{X}(\xi - \xi_{0})\right], \quad X = \xi_{L} - \xi_{0}, \quad m = 1, 2, ..., \infty$ $u_{m}(\xi_{0}) = u(\xi_{L}) = 0$ $u_{m}(\xi_{0}) = u_{m}(\xi_{L}) = 0$ také potřebujeme $v_{1}(\xi) = \sqrt{\frac{1}{X}}, \quad v'_{m}(\xi_{0}) = v'_{m}(\xi_{L}) = 0$ $v'_{m}(\xi_{0}) = v'(\xi_{L}) = 0, \quad v_{m}(\xi) = \sqrt{\frac{2}{X}} \cos\left[\frac{(m-1)\pi}{X}(\xi - \xi_{0})\right], \quad m = 2, ..., \infty$

Vzájemné relace: $u'_m(\xi) = \frac{m\pi}{X} v_{m+1}(\xi), \quad v'_{m+1}(\xi) = -\frac{m\pi}{X} u_m(\xi).$

Normování polí:

$$\mathsf{E}(x,z) = \sqrt{2Z_0k_0}\mathsf{e}(\xi,\zeta), \quad \mathsf{H}(x,z) = \sqrt{2Y_0k_0}\mathsf{h}(\xi,\zeta), \quad \overline{\nabla} = \frac{1}{k_0}\nabla$$

TE vidy:

$$e_{y}(\xi,\zeta) = f(\xi)\exp(iN\zeta)$$

$$h_{x}(\xi,\zeta) = -g(\xi)\exp(iN\zeta)$$

$$h_{z}(\xi,\zeta) = -ih(\xi)\exp(iN\zeta)$$

Všechny funkce *f*, *g*, *h* jsou spojité

Maxwellovy rovnice:

$$h_{y}(\xi,\zeta) = f(\xi)\exp(iN\zeta)$$

$$e_{x}(\xi,\zeta) = g(\xi)\exp(iN\zeta)$$

$$e_{z}(\xi,\zeta) = ih(\xi)\exp(iN\zeta)$$

TM vidy:

Funkce *f*, *h* jsou spojité, *g* je nespojitá

$$\overline{
abla} imes \mathbf{e} = -i\mathbf{h}, \quad \overline{
abla} imes \mathbf{h} = -i\varepsilon(\xi)\mathbf{e}$$

$$\frac{df(\xi)}{d\xi} = h(\xi)$$
$$g(\xi) = Nf(\xi)$$
$$\frac{dh(\xi)}{d\xi} = Ng(\xi) - \varepsilon(\xi)f(\xi)$$

$$\frac{df(\xi)}{d\xi} = \varepsilon(\xi)h(\xi)$$
$$g(\xi) = \frac{1}{\varepsilon(\xi)}Nf(\xi)$$
$$\frac{dh(\xi)}{d\xi} = Ng(\xi) - f(\xi)$$

Problém "správné" fourierovské faktorizace

P. Lalanne and G. M. Morris, *JOSA. A*, vol. 13, pp. 779-784, 1996:

Idea: Fourierův rozvoj spojité funkce konverguje rychleji než rozvoj nespojité funkce Lifeng Li, *JOSA. A*, vol. 13, pp. 1870-1876, 1996:

Postavení myšlenky na solidnější matematický základ

$$D(x) = \varepsilon(x)E(x) \implies E(x) = \sum_{m} E_{m}u_{m}(x), \quad D(x) = \sum_{m} D_{m}u_{m}(x)$$

V mnoha případech je ε nespojité.

1. Tečné složky intenzity el. pole jsou spojité na rozhraních, tedy

$$\mathsf{D}_{\parallel} = \llbracket \varepsilon \rrbracket \cdot \mathsf{E}_{\parallel}, \quad \llbracket \varepsilon \rrbracket_{mm'} = \int_{x_{\min}}^{x_{\max}} u_m(x)\varepsilon(x)u_{m'}(x)\,dx,$$

Toeplitzova matice

2. Kolmá složka intenzity elektrického pole E_{\perp} je na rozhraní nespojitá, D_{\perp} je spojité:

$$\mathsf{E} = \left[\!\left[\varepsilon^{-1}\right]\!\right] \cdot \mathsf{D}, \text{ nebo } \mathsf{D} = \left[\!\left[\varepsilon^{-1}\right]\!\right]^{-1} \cdot \mathsf{E}, \quad \left[\!\left[\varepsilon^{-1}\right]\!\right]_{mm'} = \int_{x_{\min}}^{x_{\max}} u_m(x) \frac{1}{\varepsilon(x)} u_{m'}(x) dx.$$

Obecně tedy pro konečný počet členů rozvoje

$$\begin{bmatrix} \mathsf{D}_{\parallel} \\ \mathsf{D}_{\perp} \end{bmatrix} = \begin{bmatrix} \varepsilon \\ 0 \\ \varepsilon \end{bmatrix} \cdot \begin{bmatrix} \mathsf{E}_{\parallel} \\ \mathsf{E}_{\perp} \end{bmatrix} \qquad \begin{bmatrix} \mathsf{D}_{\parallel} \\ \mathsf{D}_{\perp} \end{bmatrix} = \begin{bmatrix} \varepsilon \\ 0 \\ \varepsilon \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathsf{E}_{\parallel} \\ \mathsf{E}_{\perp} \end{bmatrix}$$

Rozvoj s konečným počtem členů a jeho maticové vyjádření:

$$\begin{split} f\left(\xi\right) &= \sum_{m=1}^{M} {}^{u} f_{m} u_{m}\left(\xi\right), \text{ etc.} &==> & f\left(\xi\right) \rightarrow {}^{u} f, \\ g\left(\xi\right) \rightarrow {}^{u} g, h\left(\xi\right) \rightarrow {}^{v} h = \begin{cases} {}^{v} h_{1} \\ {}^{v} h_{2} \\ \vdots \\ {}^{v} h_{M} \end{cases} \end{split}$$

$$\begin{aligned} \text{TE vidy:} & \text{TM vidy:} & \text{TM vidy:} & \\ {}^{vu} D \cdot {}^{u} f = {}^{v} h & {}^{v} \varepsilon^{-1} \cdot {}^{vu} D \cdot {}^{u} f = {}^{v} h \\ {}^{u} g\left(\xi\right) = N {}^{u} f\left(\xi\right) & {}^{u} g\left(\xi\right) = N {}^{u} g\left(\xi\right) \\ {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f \\ & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f \\ & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} f \\ & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f & {}^{v} t = N {}^{2 u} g - {}^{u} f \\ & {}^{uv} D \cdot {}^{v} h = N {}^{u} g - {}^{u} \varepsilon \cdot {}^{u} f & {}^{uv} D \cdot {}^{v} \varepsilon -1 \cdot {}^{vu} D \cdot {}^{v} t = N {}^{2 u} \eta \cdot {}^{u} f \\ & {}^{uv} D_{mn} = \int_{\xi_{0}}^{\xi_{M}} u_{m}(\xi) \varepsilon(\xi) u_{n}(\xi) d\xi, & {}^{v} \varepsilon_{mn} = \int_{\xi_{0}}^{\xi_{M}} v_{m}(\xi) \varepsilon(\xi) v_{n}(\xi) d\xi \\ & {}^{uv} D_{mn} = -{}^{vu} D_{mn} = \frac{m \pi}{X} \delta_{mn}, & {}^{u} \eta_{mn} = \int_{\xi_{0}}^{\xi_{M}} u_{m}(\xi) \frac{1}{\varepsilon(\xi)} u_{n}(\xi) d\xi \\ & (1 + {}^{uv} D \cdot {}^{v} \varepsilon^{-1} \cdot {}^{vu} D)_{mm'} = \delta_{mm'} - \frac{\pi^{2}}{X^{2}} mm' ({}^{v} \varepsilon^{-1})_{m+1,m'+1} \end{aligned}$$

Metoda "BEX" (ÚFE)

 $\begin{array}{ccc} \text{matice vlastních vektorů (koef. rozvoje polí vidů)} \\ \text{Rovnice pro vlastní vidy} & \text{diagonální matice čtverců vlastních čísel} \\ \text{TE:} & \begin{bmatrix} {}^{u}\boldsymbol{\varepsilon} + {}^{uv}\mathsf{D} \cdot {}^{vu}\mathsf{D} \end{bmatrix} \cdot {}^{u}\mathsf{F} = {}^{u}\mathsf{F} \cdot \mathsf{N}^{2} & {}^{u}\mathsf{G} = {}^{u}\mathsf{F} \cdot {}^{u}\mathsf{N} \\ \text{TM:} & \begin{bmatrix} \mathsf{I} + {}^{uv}\mathsf{D} \cdot {}^{v}\boldsymbol{\varepsilon}^{-1} \cdot {}^{vu}\mathsf{D} \end{bmatrix} \cdot {}^{u}\mathsf{F} = {}^{u}\boldsymbol{\eta} \cdot {}^{u}\mathsf{F} \cdot \mathsf{N}^{2} & {}^{u}\mathsf{G} = {}^{u}\boldsymbol{\eta} \cdot {}^{u}\mathsf{F} \cdot {}^{u}\mathsf{N} \end{array}$

 ${}^{s}p(\zeta) = {}^{s}a(\zeta) + {}^{s}b(\zeta), \quad {}^{s}q(\zeta) = {}^{s}a(\zeta) - {}^{s}b(\zeta)$ komplexní amplitudy vidů

$$e_{y}(\zeta) = {}^{s}F \cdot ({}^{s}a + {}^{s}b), \qquad h_{y}(\zeta) = {}^{s}F \cdot ({}^{s}a + {}^{s}b), \\ h_{x}(\zeta) = -{}^{s}G \cdot ({}^{s}a - {}^{s}b), \qquad e_{x}(\zeta) = {}^{s}G \cdot ({}^{s}a - {}^{s}b), \\ h_{z}(\zeta) = -i^{vu}D \cdot {}^{s}F \cdot ({}^{s}a + {}^{s}b), \qquad e_{z}(\zeta) = -i^{uv}D \cdot {}^{s}\varepsilon^{-1} \cdot {}^{s}F \cdot ({}^{s}a + {}^{s}b), \\ {}^{s}a(\zeta) = \exp(i{}^{s}N\zeta) \cdot {}^{s}a(0), \qquad {}^{s}b(\zeta) = \exp(-i{}^{s}N\zeta) \cdot {}^{s}b(0).$$

Rozložení polí ve struktuře - metoda rozptylové matice

Přechod mezi sekcemi (různé vidy v různých sekcích):

$$\begin{pmatrix} {}^{s}b \\ {}^{t}a \end{pmatrix} = \begin{pmatrix} -{}^{ts}U^{-1} \cdot {}^{ts}V & {}^{ts}U^{-1} \\ {}^{ts}U - {}^{ts}V \cdot {}^{ts}U^{-1} \cdot {}^{ts}V & {}^{ts}V \cdot {}^{ts}U^{-1} \end{pmatrix} \cdot \begin{pmatrix} {}^{s}a \\ {}^{t}b \end{pmatrix}$$

$${}^{ts}P = {}^{t}F^{-1} \cdot {}^{s}F, \quad {}^{ts}Q = {}^{t}G^{-1} \cdot {}^{s}G$$

$${}^{ts}U = \frac{1}{2} \begin{pmatrix} {}^{ts}P + {}^{ts}Q \end{pmatrix}, \quad {}^{ts}V = \frac{1}{2} \begin{pmatrix} {}^{ts}P - {}^{ts}Q \end{pmatrix}$$

Rozptylová matice spojení (konkatenace) dvou sousedních sekcí

$$\begin{pmatrix} {}^{1}b \\ {}^{2}a \end{pmatrix} = \begin{pmatrix} {}^{1}S_{11} & {}^{1}S_{12} \\ {}^{1}S_{21} & {}^{1}S_{22} \end{pmatrix} \cdot \begin{pmatrix} {}^{1}a \\ {}^{2}b \end{pmatrix}, \quad \begin{pmatrix} {}^{2}b \\ {}^{3}a \end{pmatrix} = \begin{pmatrix} {}^{2}S_{11} & {}^{2}S_{12} \\ {}^{2}S_{21} & {}^{2}S_{22} \end{pmatrix} \cdot \begin{pmatrix} {}^{2}a \\ {}^{3}b \end{pmatrix} \Rightarrow \begin{pmatrix} {}^{1}b \\ {}^{3}a \end{pmatrix} = \begin{pmatrix} {}^{S}_{11} & {}^{S}_{12} \\ {}^{S}_{21} & {}^{S}_{22} \end{pmatrix} \cdot \begin{pmatrix} {}^{1}a \\ {}^{3}b \end{pmatrix}$$

$$\begin{split} \mathsf{S}_{11} &= \, {}^{1}\mathsf{S}_{12} \cdot \big(\mathsf{I} - {}^{2}\mathsf{S}_{11} \cdot {}^{1}\mathsf{S}_{22}\,\big)^{-1} \cdot \, {}^{2}\mathsf{S}_{11} \cdot {}^{1}\mathsf{S}_{21} + \, {}^{1}\mathsf{S}_{11}, \\ \mathsf{S}_{12} &= \, {}^{1}\mathsf{S}_{12} \cdot \big(\mathsf{I} - {}^{2}\mathsf{S}_{11} \cdot {}^{1}\mathsf{S}_{22}\,\big)^{-1} \cdot \, {}^{2}\mathsf{S}_{12}, \\ \mathsf{S}_{21} &= \, {}^{2}\mathsf{S}_{21} \cdot \big(\mathsf{I} - {}^{1}\mathsf{S}_{22} \cdot \, {}^{2}\mathsf{S}_{11}\,\big)^{-1} \cdot \, {}^{1}\mathsf{S}_{21}. \\ \mathsf{S}_{22} &= \, {}^{2}\mathsf{S}_{21} \cdot \big(\mathsf{I} - {}^{1}\mathsf{S}_{22} \cdot \, {}^{2}\mathsf{S}_{11}\,\big)^{-1} \cdot \, {}^{1}\mathsf{S}_{22} \cdot \, {}^{2}\mathsf{S}_{12} + \, {}^{2}\mathsf{S}_{22}. \end{split}$$

Periodické struktury a Blochovy vidy

Zobecněná úloha vlastních čísel –Blochovy vidy

$$\begin{pmatrix} -S_{11} & I \\ S_{21} & 0 \end{pmatrix} \cdot \mathbf{B} = \begin{pmatrix} 0 & S_{12} \\ I & -S_{22} \end{pmatrix} \cdot \mathbf{B} \cdot \mathbf{\Gamma}$$

Transformace mezi lokálními normálními vidy a Blochovými vidy:

$$\begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \mathsf{B} \cdot \begin{pmatrix} \mathsf{a}^B \\ \mathsf{b}^B \end{pmatrix}$$

Rozptylová matice *K* period v bázi Blochových vidů

$$S^{B} = \begin{pmatrix} 0 & (\Gamma^{+})^{K} \\ (\Gamma^{+})^{K} & 0 \end{pmatrix}, \quad \Gamma^{+} = diag(\gamma_{1}, \gamma_{2}, \dots, \gamma_{M}), \quad |\gamma_{j}| \leq 1, \ j = 1, 2, \dots, M$$

Numericky stabilnější formulace rovnice pro Blochovy vidy

Konstanty šíření Blochových vidů v zakázaném pásu jsou komplexní, γ tak mohou být v modulu velmi velká čísla.

Lze najít stabilnější formulaci úlohy:

$$\begin{pmatrix} \mathbf{0} & \mathbf{S}_{12} \\ \mathbf{I} & -\mathbf{S}_{22} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{b}_1 \end{pmatrix} = (\mathbf{1} + \gamma)^{-1} \cdot \begin{pmatrix} -\mathbf{S}_{11} & \mathbf{I} + \mathbf{S}_{12} \\ \mathbf{I} + \mathbf{S}_{21} & -\mathbf{S}_{22} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{b}_1 \end{pmatrix}$$

neboli

$$\begin{pmatrix} -S_{11} & I + S_{12} \\ I + S_{21} & -S_{22} \end{pmatrix}^{-1} \cdot \begin{pmatrix} 0 & S_{12} \\ I & -S_{22} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = G \cdot \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}'$$

kde

$$G = (1 + \gamma)^{-1}, \ \gamma = G^{-1} - 1.$$

Vlastní číslo G je zřejmě malé.

Příklad

Test metody

"COST 268 task" (*Opt. Quantum Electron.* 34, 455-470, 2002)

KOMPLEXNÍ TRANSFORMACE SOU**Ř**ADNICE JAKO VELMI Ú**Č**INNÁ DOKONALE P**Ř**IZP**Ů**SOBENÁ VRSTVA^(*)

^{*} J. P. Hugonin, Ph. Lalanne, JOSA A, 22, 1844-1849, 2005; J. Čtyroký, JLT, submitted

KOMPLEXNÍ TRANSFORMACE SOU**Ř**ADNICE

Nelineární komplexní transformace:

$$\xi = k_0 \mathbf{x} = \mathbf{s}(\chi) = \begin{cases} \chi_b + \frac{2(\chi_b - \chi_{\min})}{\pi(1 - \gamma)} \left\{ \tan \frac{\pi(\chi - \chi_b)}{2(\chi_b - \chi_{\min})} - \frac{\gamma}{\sqrt{1 - \gamma}} \arctan \left[\sqrt{1 - \gamma} \tan \frac{\pi(\chi - \chi_b)}{2(\chi_b - \chi_{\min})} \right] \right\}, \\ \chi_{\min} < \chi < \chi_b, \\ \chi_b \le \chi \le \chi_{u'}, \\ \chi_u + \frac{2(\chi_{\max} - \chi_u)}{\pi(1 - \gamma)} \left\{ \tan \frac{\pi(\chi - \chi_u)}{2(\chi_{\max} - \chi_u)} - \frac{\gamma}{\sqrt{1 - \gamma}} \arctan \left[\sqrt{1 - \gamma} \tan \frac{\pi(\chi - \chi_u)}{2(\chi_{\max} - \chi_u)} \right] \right\}, \end{cases}$$

Funkce měřítka:

$$c(\chi) = \frac{1}{ds/d\chi} = \begin{cases} \left[1 - \gamma \sin^2 \frac{\pi(\chi - \chi_b)}{2(\chi_b - \chi_{\min})}\right] \cos^2 \frac{\pi(\chi - \chi_b)}{2(\chi_b - \chi_{\min})}, & \chi_{\min} < \chi < \chi_b, \\ 1, & \chi_b \le \chi \le \chi_u, \\ \left[1 - \gamma \sin^2 \frac{\pi(\chi - \chi_u)}{2(\chi_{\max} - \chi_u)}\right] \cos^2 \frac{\pi(\chi - \chi_u)}{2(\chi_{\max} - \chi_u)}, & \chi_u < \chi < \chi_{\max}. \end{cases}$$

APLIKACE: VLNOVODNÝ SENZOR S POVRCHOVÝMI PLAZMONY

Spektrální oblast:650 - 950 nmsubstrát: SiO_2 vlnovod:dopovaný SiO_2 Au:vakuově napařená vrstva zlataanalyte:n = 1.40

Disperze materiálu vzata v úvahu (kromě analytu)

VLNOVODNÝ SENZOR S POVRCHOVÝMI PLAZMONY

Spektrální transmitance pro TM polarizaci

VYUŽITÍ SYMETRIE VLNOVODNÉ STRUKTURY

Rozštěpení rezonance mikrorezonátoru vlivem porušení symetrie vazbou na vlnovod; při symetrickém a antisymetrickém buzení jsou rezonanční křivky posunuté!

3D METODY ZALOŽENÉ NA FOURIEROVSKÉM ROZVOJI

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} E_{f}^{(1)} & E_{f}^{(2)} & E_{f}^{(3)} & E_{f}^{(3)} & E_{f}^{(3)} & E_{f}^{(1)} & E_{f}^{(2)} & E_{f}^{(2)}$$

KOMPLEXNÍ TRANSFORMACE ve 2D

Transformace nekonečné komplexní oblasti do reálné konečné oblasti:

$$s(x'') = \begin{cases} x_1'' + \frac{2(x_1'' - x_0')}{\pi(1 - \gamma_x)} \left\{ \tan \frac{\pi(x'' - x_1'')}{2(x_1'' - x_0')} - \frac{\gamma_x}{\sqrt{1 - \gamma_x}} \arctan \left[\sqrt{1 - \gamma_x} \tan \frac{\pi(x'' - x_1'')}{2(x_1'' - x_0')} \right] \right\}, & x_0'' < x_{L_x - 1}, \\ x_1'' < x_1'' < x_1'' < x_1'' < x_{L_x - 1}, \\ x_{L_x - 1}'' + \frac{2(x_{L_x}'' - x_{L_x - 1}'')}{\pi(1 - \gamma_x)} \left\{ \tan \frac{\pi(x'' - x_{L_x - 1}'')}{2(x_{L_x}'' - x_{L_x - 1}')} - \frac{\gamma_x}{\sqrt{1 - \gamma_x}} \arctan \left[\sqrt{1 - \gamma_x} \tan \frac{\pi(x'' - x_{L_x - 1}'')}{2(x_{L_x}'' - x_{L_x - 1}')} \right] \right\}, & x_{L_x - 1}'' < x_{L_x - 1$$

a analogicky pro s(y'').

V Maxwellových rovnicích potřebujeme znát $c_x(x'') = ds_x(x'')/dx''$, $c_y(y'') = ds_y(y'')/dy''$, což jsou (překvapivě) vcelku rozumné funkce

$$c_{x}(x'') = \begin{cases} \left[1 - \gamma \sin^{2} \frac{\pi(x'' - x_{1}'')}{2(x_{1}'' - x_{0}'')}\right] \cos^{2} \frac{\pi(x'' - x_{1})}{2(x_{1}'' - x_{0}'')}, \\ x_{0}'' < x'' < x_{1,'}'', \\ 1, \quad x_{1}'' \le x'' \le x_{L_{x}-1}'', \\ \left[1 - \gamma \sin^{2} \frac{\pi(x'' - x_{L_{x}-1}'')}{2(x_{L_{x}}'' - x_{L_{x}-1}'')}\right] \cos^{2} \frac{\pi(x'' - x_{L_{x}-1}'')}{2(x_{L_{x}}'' - x_{L_{x}-1}'')} \end{cases}$$

a podobně pro $c_y(y'')$.

UFE

Aplikace různých typů okrajových podmínek

"H-FORMULACE" ELEKTROMAGNETICKÉHO PROBLÉMU

Za nezávislé skalární funkce volíme příčné složky vektoru H

Z Maxwellových rovnic získáme

$$\begin{split} h_{z} &= \frac{i}{N} \bigg(c_{x}(x'') \frac{\partial h_{x}}{\partial x''} + c_{y}(y'') \frac{\partial h_{y}}{\partial y''} \bigg), \\ e_{x} &= \eta \bigg[Nh_{y} - \frac{1}{N} c_{y} \frac{\partial}{\partial y''} \bigg(c_{x} \frac{\partial h_{x}}{\partial x''} + c_{y} \frac{\partial h_{y}}{\partial y''} \bigg) \bigg], \\ e_{y} &= -\eta \bigg[Nh_{x} - \frac{1}{N} c_{x} \frac{\partial}{\partial x''} \bigg(c_{x} \frac{\partial h_{x}}{\partial x''} + c_{y} \frac{\partial h_{y}}{\partial y''} \bigg) \bigg], \\ e_{z} &= i\eta \bigg(c_{x} \frac{\partial h_{y}}{\partial x''} - c_{y} \frac{\partial h_{x}}{\partial y''} \bigg), \end{split}$$

a dostaneme rovnici pro vlastní vidy v H-formulaci:

$$\varepsilon \left[\mathbf{I} + \begin{pmatrix} \eta c_x \frac{\partial}{\partial x''} & c_y \frac{\partial}{\partial y''} \eta \\ \eta c_y \frac{\partial}{\partial y''} & -c_x \frac{\partial}{\partial x''} \eta \end{pmatrix} \cdot \begin{pmatrix} c_x \frac{\partial}{\partial x''} & c_y \frac{\partial}{\partial y''} \\ c_y \frac{\partial}{\partial y''} & -c_x \frac{\partial}{\partial x''} \end{pmatrix} \right] \cdot \begin{pmatrix} h_x \\ h_y \end{pmatrix} = N^2 \begin{pmatrix} h_x \\ h_y \end{pmatrix}.$$

FOURIEROVSKÝ ROZKLAD I

$$\begin{aligned} e_{x}(x'',y'') &= u_{x,m}(x'')v_{y,n}(y'')e_{x,mn'} \quad m = 1, \dots, M_{x'} \quad n = 1, \dots, M_{y} + 1. \\ e_{y}(x'',y'') &= v_{x,m}(x'')u_{y,n}(y'')e_{y,mn'} \quad m = 1, \dots, M_{x} + 1, \quad n = 1, \dots, M_{y'} \\ e_{z}(x'',y'') &= v_{x,m}(x'')v_{y,n}(y'')e_{z,mn'} \quad m = 1, \dots, M_{x} + 1, \quad n = 1, \dots, M_{y} + 1, \\ h_{x}(x'',y'') &= v_{x,m}(x'')u_{y,n}(y'')h_{x,mn'} \quad m = 1, \dots, M_{x} + 1, \quad n = 1, \dots, M_{y'} + 1, \\ h_{y}(x'',y'') &= u_{x,m}(x'')v_{y,n}(y'')h_{y,mn'} \quad m = 1, \dots, M_{x'} \quad n = 1, \dots, M_{y} + 1, \\ h_{z}(x'',y'') &= u_{x,m}(x'')u_{y,n}(y'')h_{z,mn'} \quad m = 1, \dots, M_{x'} \quad n = 1, \dots, M_{y}. \end{aligned}$$

(Předpokládáme Einsteinovu konvenci sčítání přes opakované indexy).

Rovnice pro vlastní vidy přejde v rovnici pro vlastní čísla a vlastní vektory matice:

$$\begin{bmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} + \begin{pmatrix} vu \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \cdot vu C^{u} & v C^{uv} \cdot vv \llbracket \boldsymbol{\varepsilon} \end{bmatrix}^{-1} \\ uv \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \cdot u C^{vu} & -uv C^{v} \cdot vv \llbracket \boldsymbol{\varepsilon} \end{bmatrix}^{-1} \\ \cdot \begin{pmatrix} uv C^{u} & u C^{uv} \\ v C^{vu} & -vu C^{v} \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{pmatrix} = \begin{pmatrix} vu \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & uv \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{y} \\ \mathbf{H}_{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{y} \\ \mathbf{H}_{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{y} \\ \mathbf{$$

Matice C zahrnují fourierovský rozklad transformačních funkcí $c_x(x'') \ge c_y(y'')$

FOURIEROVSKÝ ROZKLAD II

Transformaci derivací $\frac{\partial}{\partial x'} = c_x(x'')\frac{\partial}{\partial x''}, \quad \frac{\partial}{\partial y'} = c_y(y'')\frac{\partial}{\partial y''}$ rovněž rozložíme v harmonické funkce

$$c_{x}(x'')\frac{du_{x,m}(x'')}{dx''} = v_{x,m'}(x'')^{vu}C_{x,m'm'} \quad c_{x}(x'')\frac{dv_{x,m}(x'')}{dx''} = u_{x,m'}(x'')^{uv}C_{x,m'm'}$$

$$c_{y}(y'')\frac{du_{y,n}(y'')}{dy''} = v_{y,n'}(y'')^{vu}C_{y,n'n'} \quad c_{y}(y'')\frac{dv_{y,n}(y'')}{dy''} = u_{y,n'}(y'')^{uv}C_{y,n'n'}$$

a zavedeme "dvojrozměrné" matice C

$${}^{uv}C^u = {}^{uv}C_x \otimes {}^{u}I_{y'} {}^{uv}C^v = {}^{uv}C_x \otimes {}^{v}I_{y'} {}^{vu}C^u = {}^{vu}C_x \otimes {}^{u}I_{y'} {}^{vu}C^v = {}^{vu}C_x \otimes {}^{v}I_{y'}$$
$${}^{u}C^{uv} = {}^{u}I_x \otimes {}^{uv}C_{y'} {}^{u}C^{vu} = {}^{u}I_x \otimes {}^{vu}C_{y'} {}^{v}C^{uv} = {}^{v}I_y \otimes {}^{uv}C_{y'} {}^{v}C^{vu} = {}^{v}I_x \otimes {}^{vu}C_y.$$

Rovnice pro vlastní vidy přejde v rovnici pro vlastní čísla a vlastní vektory matice:

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} + \begin{pmatrix} {}^{vu} \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \cdot {}^{vu} \mathbf{C}^{u} & {}^{v} \mathbf{C}^{uv} \cdot {}^{vv} \begin{bmatrix} \boldsymbol{\varepsilon} \end{bmatrix}^{-1} \\ {}^{uv} \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \cdot {}^{u} \mathbf{C}^{vu} & -{}^{uv} \mathbf{C}^{v} \cdot {}^{vv} \begin{bmatrix} \boldsymbol{\varepsilon} \end{bmatrix}^{-1} \end{pmatrix} \cdot \begin{pmatrix} {}^{uv} \mathbf{C}^{u} & {}^{u} \mathbf{C}^{uv} \\ {}^{v} \mathbf{C}^{vu} & -{}^{vu} \mathbf{C}^{v} \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{pmatrix} = \begin{pmatrix} {}^{vu} \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & {}^{uv} \begin{bmatrix} \boldsymbol{\eta} \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{y} \\$$

kde symboly $[[\eta]], [[\eta]] a [\varepsilon]]$ označují "správnou" fourierovskou faktorizaci ve 2D. Další postup (rozptylové matice a jejich konkatenace) je analogický případu 2D.

PŘÍKLAD APLIKACE 3D METODY

VAZEBNÍ ČLEN SE SUBVLNOVÝM MŘÍŽKOVÝM VLNOVODEM

Existuje množství komerčních softwarových produktů pro modelování a návrh integrovaně-optických struktur

