Základy technologie

fotonických vlnovodných struktur

Některé významnější technologie

```
Iontová výměna ve skleněných podložkách (ion exchange – difúzní proces)
      Pasivní, případně aktivní struktury (dopované Er<sup>3+</sup>)
Polymery (odstředivé nanášení)
      Termooptické (elektrooptické?) modulátory a přepínače
Ti:LiNbO<sub>3</sub>, APE LiNbO<sub>3</sub> (difúzní procesy)
      Elektrooptické, akustooptické, aktivní (dotované Er<sup>3+</sup>),
      nelineární optické prvky (kaskádní procesy \chi^2: \chi^2)
Silica on silicon (Si/SiO<sub>2</sub>/SiO<sub>2</sub>:Ge,P/SiO<sub>2</sub>)
       hydrolýza plamenem (IO "vlákno")
       Měrný útlum řádu 0.001 dB/cm
       Pasivní součástky, termooptické, aktivní (dotované Er<sup>3+</sup>)
Si<sub>3</sub>N<sub>4</sub> on silica (Si<sub>3</sub>N<sub>4</sub> /SiO<sub>2</sub>/Si) (chemické depozice - PECVD);
       Pasivní součástky, termooptické, aktivní (dotované Er<sup>3+</sup>)
Polovodiče III-V (InP/Ga<sub>x</sub>In<sub>y</sub>As<sub>1-x</sub>P<sub>1-y</sub>, GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As) – epitaxní růst
      MOCVD, MBE, CBE
      Lasery, polovodičové zesilovače, elektroabsorpční
      modulátory, spektrální de/multiplexory, detektory,...)
Silicon on Insulator (SOI, Si/SiO<sub>2</sub>/Si)
       ("wafer bonding", extrémní kontrast indexu lomu 3.5 : 1.5,
       velmi malá stopa vidu, extrémní hustota součástek)
Lithium Niobate on Insulator (LNOI, LiNbO<sub>3</sub>/SiO<sub>2</sub>/Si)
      ("wafer bonding"); velký kontrast indexu lomu 2.2 : 1.5
      menší stopa pole vidu, vysoká účinnost elektrooptických součástek
```

Příprava vlnovodů v LiNbO3 difúzními metodami

Difuze titanu

Protonová výměna

Příprava polovodičových vlnovodů A^{III}B^V epitaxním růstem

Příprava vlnovodů SOI (silicon on insulator)

Lithium niobate on insulator – technologie přípravy

FIG. 1. Fabrication sequence of lithium-niobate-on-insulator thin films by combining ion cut and wafer bonding: (a) preparation of ion-implanted donor wafer and (b) SiO₂-deposited acceptor wafer, (c) wafer bonding, (d) thermal treatment. (e) The final high-quality lithium-niobate-on-insulator thin film after a fine surface polishing process.

Y. Jia, L. Wang, and F. Chena, Appl. Phys. Rev. 8, 011307 (2021)

Příprava vlnovodů LNOI (lithium niobate on insulator)

Příprava masek na elektronovém litografu

- 1. Modelování a návrh struktury vlnovodů a elektrod
- 2. Příprava dat pro elektronový litograf (digitalizace?)
- 3. Skleněná (křemenná) podložka s cca 50-100 nm Cr ("matný chrom")
- 4. Depozice elektronového rezistu odstředivkou (roztok PMMA)
- 5. Expozice rezistu elektronovým svazkem
- 6. "Vyvolání" fotorezistu (odstranění exponovaných míst)
- 7. lontové leptání chromové vrstvy

Pasivní fotonické vlnovodné struktury

Vlnovodné rozvětvení 1×2

1. Jednovidové rozvětvení buzené do společné větve

Výkon se dělí rovnoměrně do obou výstupních větví z důvodů symetrie

Symetrické rozvětvení buzené v opačném směru

 $\Delta \varphi$

2. Současné buzení do obou větví se vzájemným fázovým posuvem

Relativní změnou fáze vidů ve vstupní větvi je možno měnit výstupní výkon

Symetrická směrová odbočnice (směrový vazební člen)

Spektrální vlastnosti směrové odbočnice

UFE

Rozložení optického záření

Asymetrické vlnovodné rozvětvení jako oddělovač vidů

 $\frac{\Delta N_{eff}}{\sqrt{n_s^i - N_{eff}^2} \theta} \begin{cases} >1, \Rightarrow \text{ asymetrické Y, oddělovač vidů} \\ <0.1, \Rightarrow \text{ symetrické Y, dělič výkonu} \end{cases}$

Pokud je výstupní úhel θ velmi malý ($\theta < 0,2^{\circ}$) a výstupní větve asymetrické, chová se rozvětvení Y jako *oddělovač vidů*, nikoli jako dělič výkonu

Spektrálně nezávislá odbočnice 2×2

Odbočnice může pracovat v celém intervalu 1,25 – 1,6 µm; omezení je dáno oblastí jednovidového režimu vlnovodů

Odbočnice může pracovat v celém intervalu 1,25 – 1,6 µm; omezení je dáno oblastí jednovidového režimu vlnovodů

Děliče s mnohovidovou interferencí

Elementární teorie kovového dvoudeskového vlnovodu

nedokonalé zobrazení

Děliče s mnohovidovou interferencí

Princip: Interference vidů v mnohovidovém planárním vlnovodu (~1978)

Úprava pro zmenšení fázové chyby (snížení počtu potřebných vidů)

původní tvar

modifikovaný tvar

struktura děliče 2×2 včetně vstupních a výstupních vlnovodů

M.T.Hill, J. Lightwave Technol. 21, 2305-2313, 2003

Vazební člen 2x2 s úpravou pro zmenšení fázové chyby (snížení počtu potřebných vidů) a redukcí ztrát v ohybech

M.T.Hill, J. Lightwave Technol. 21, 2305-2313, 2003

struktura děliče 2×2 včetně vstupních a výstupních vlnovodů

Hvězdicový difrakční vazební člen M×N

"Jalové" vlnovody pro zlepšení rovnoměrnosti rozdělení výkonu

UFE

Umožňuje rovnoměrně navázat záření do velkého počtu (až několika desítek) vlnovodů

Spektrální demultiplexor s fázovanou řadou vlnovodů ("Phasar", AWG – arrayed waveguide grating demux)

Fázovaná řada (několika desítek) vlnovodů

M. K. Smit, 1987; dnes asi nejpopulárnější součástka

Příklad provedení integrovaně-optického AWG demultiplexoru na bázi InP

 $\Delta \lambda = \frac{\lambda}{f} \Delta f = \frac{\lambda^2}{c} \Delta f; \text{ pro } \lambda = 1550 \text{ nm a } \Delta f = 100 \text{ GHz je } \Delta \lambda = 0.8 \text{ nm}$

Příklady AWG demultiplexorů - 1

SOI, Institute of Microstructural Sciences, NRC, Ottawa, 2004

Příklady AWG demultiplexorů - 2

UFE

4 kanály, InP podložka

COBRA TU/e, NL: Y. Barbarin et al. *IEEE Photon. Technol. Lett.*, Vol. 16, pp 2478-80, Nov. 2004.

17 kanálů, SOI

T. Fukazawa et al. *Jpn. J. Appl. Phys*., Vol. 43 No. 5B, pp. 673–675, 2004

AWG

- 16-channel AWG, 200GHz
- 200µm x 500µm area
 - -3dB insertion loss
 - -15dB to -20dB crosstalk

¹⁰⁰µm

Machův-Zehnderův filtr 11. řádu

- Channel drop, 1 out of 8
- $\Delta f_{ch} = 200 GHz$
- 11th order filter
- -15dB crosstalk

Dynamické a nelineární fotonické vlnovodné prvky

Poruchová metoda výpočtu konstanty šíření "slabě modifikovaného" vlnovodu

Zjednodušená rovnice "vázaných vln zanedbávající zpětné vlny:

$$\frac{da_{\mu}(z)}{dz} = i\beta_{\mu}a_{\mu}(z) + i\sum_{\nu} K_{\mu\nu}^{++}(z)a_{\nu}(z).$$

Pro slabou homogenní poruchu (nezávislou na z) přibližně platí

$$\begin{split} &\frac{da_{\mu}\left(z\right)}{dz}\approx i\beta_{\mu}a_{\mu}\left(z\right)+i\mathcal{K}_{\mu\mu}^{++}a_{\mu}\left(z\right), \quad \text{neboli} \quad \frac{da_{\mu}\left(z\right)}{dz}\approx i\left(\beta_{\mu}+\mathcal{K}_{\mu\mu}^{++}\right)a_{\mu}\left(z\right), \quad \text{a}\\ &a_{\mu}\left(z_{0}+\Delta z\right)\approx \exp\left[i\left(\beta_{\mu}+\mathcal{K}_{\mu\mu}^{++}\right)\Delta z\right]a_{\mu}\left(z_{0}\right). \end{split}$$

"Porucha" tedy (v prvním přiblížení) způsobí změnu konstanty šíření o hodnotu

$$\Delta\beta = \frac{\omega\varepsilon_0}{4} \frac{\left|\beta_{\mu}\right|}{\beta_{\mu}} \iint\limits_{S} \left[\varepsilon\left(x,y\right) - \varepsilon^{\left(0\right)}\left(x,y\right)\right] \left(\left|\mathbf{e}_{\mu\perp}^*\left(x,y\right)\right|^2 + \frac{\varepsilon^{\left(0\right)}\left(x,y\right)}{\varepsilon\left(x,y\right)} \left|\boldsymbol{e}_{\mu\boldsymbol{z}}\right|^2\right) dxdy.$$

Termooptický jev

Jednoduchý jev – existuje ve všech materiálech
 při vhodné konstrukci časové konstanty řádu ms až µs!

 $\varphi = k_0 NL$

fázový posun

při šíření vlny

Elektrooptický jev

změna indexu lomu (tenzoru optické permitivity) vlivem vnějšího elektrického pole

$$\Delta(\boldsymbol{\varepsilon}^{-1}) = \tilde{\mathbf{r}} \cdot \mathbf{E}_{\boldsymbol{v}}; \quad \Delta \boldsymbol{\varepsilon} \cong -\boldsymbol{\varepsilon} \cdot (\tilde{\mathbf{r}} \cdot \mathbf{E}_{\boldsymbol{v}}) \cdot \boldsymbol{\varepsilon}$$

malá změna permitivity \Rightarrow teorie vázaných vln

Akustooptický jev

difrakce na (povrchové) akustické vlně jako na dynamické optické difrakční mřížce

Nekolineární interakce:

Akustooptický jev

Kolineární interakce

Účinnost akustooptické interakce

$$\eta = \frac{\kappa^2}{\kappa^2 + (\Delta k_z / 2)^2} \sin^2 \left(\sqrt{\kappa^2 + (\Delta k_z / 2)^2} L \right),$$
$$\kappa \approx \frac{k_0}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{TM} \left(x, y \right) \cdot \Delta \varepsilon \left(x, y \right) \cdot e^{TE} \left(x, y \right) dxdy = \frac{\pi}{2L_c}$$

Účinnost akustooptické interakce

$$\eta = \frac{\kappa^2}{\kappa^2 + (\Delta k_z / 2)^2} \sin^2 \left(\sqrt{\kappa^2 + (\Delta k_z / 2)^2} L \right),$$

Vliv koncentrace volných nosi**čů** náboje na optické vlastnosti polovodičového materiálu "Volné" elektrony ve vodivostním pásu v homogenním elektrickém poli $m_e^* \frac{d^2 x}{dt^2} + \gamma \frac{dx}{dt} - qE_0 e^{-i\omega t} = 0$, γ – fenomenologická konstanta tlumení Ustálené řešení je $X_0 = \frac{q}{m_e^* \omega^2 + i\gamma\omega} E_0$ – amplituda výchylky z rovnovážné polohy Elektrická polarizace: $\Delta P = -qn_e x_0 = -\frac{q^2 n_e}{m_e^* \omega^2 + i\gamma\omega} E_0$ n_e – koncentrace elektronů $\Delta \varepsilon = \Delta P / (\varepsilon_0 E_0) = -\frac{q^2 n_e}{\varepsilon_0 (m_e^* \omega^2 + i\gamma \omega)} \approx -\frac{q^2 n_e}{\varepsilon_0 m_e^* \omega^2} + i \frac{q^2 n_e \gamma}{\varepsilon_0 (m_e^*)^2 \omega^3}$ V konstantním poli $\gamma \frac{dx}{dt} = qE$, $t.j. v = \frac{dx}{dt} = \frac{q}{\gamma}E = \mu_e E$, μ_e – pohyblivost elektronu $\varepsilon + \Delta \varepsilon = (n + \Delta n)^2 \doteq \varepsilon + 2n\Delta n + (\Delta n)^2$ $\Delta n' \approx -\frac{q^2 n_e \lambda^2}{8\pi^2 \varepsilon_0 n m_e^* c^2}, \quad \alpha = k_0 \Delta n'' \approx \frac{q^3 n_e \lambda^2}{8\pi^2 \varepsilon_0 n m_e^{*2} \mu_e c^2}$ pak $\Delta n' \simeq 10^{-3} \div 10^{-2}$ (!), $b \approx 1 \text{ dB/cm}$

Elektroabsorpce a elektrorefrakce v polovodičích

Zakázaný pás

 \downarrow

"Zesílení" excitonovými efekty v kvantových jamách; QCSE (Starkův jev v kvantově ohraničených strukturách)

Starkův jev v kvantově ohraničených strukturách (QCSE)

UFE

Pásový energetický diagram polovodiče s kvantovou jámou s přiloženým napětím (el. polem) E Vodivostní pás Vodivostní pás Valenční pás

Elektroabsorpční Starkův jev (QCSE) \Rightarrow Kramersovy-Kronigovy relace \Rightarrow Elektrorefrakční Starkův jev (QCSE)

Excitonové jevy v kvantových jamách zvýrazňují QCSE (strmější absorpční hrana)

Machův-Zehnderův interferometrický modulátor

Modulační rychlost elektrooptických modulátorů l

Standardní modulátor s elektrodami "se soustředěnými parametry"

Modulační rychlost elektrooptických modulátorů II

Modulátor s elektrodami s postupnou vlnou

 $N_{\mu} \approx 4.2$, $N \approx 2.2$

Účinnost modulace elektrodami délky *L*:

Šířka pásma (pro pokles účinnosti modulace o 4 dB) je

Pro

$$B \cdot L pprox rac{\Omega_{\max}}{2\pi} L = rac{c}{2(N_{\mu} - N)}$$

UFE

Elektrody tvoří součást mikrovlnného koplanárního vedení ⇒ neuplatní se kapacita elektrod, kritický je *rozdíl rychlostí šíření optické a modulační elektrické vlny*.

Optická vlna:

$$E_{opt} = E_0 \exp[j\omega(t - Nz/c)]$$

$$\eta_{\rm mod} \sim \left[\frac{\sin \frac{\Omega}{2c} \left(N_{\mu} - N \right) L}{\frac{\Omega}{2c} \left(N_{\mu} - N \right) L} \right]^2;$$

$$B \cdot L \approx 10 \text{ GHz} \cdot \text{cm}$$

Technické parametry reálných elektrooptických modulátorů

Typická modulační charakteristika

"Offset" v přepínací charakteristice je důsledkem rozdílu v optické dráze ramen interferometru. Je ho možno kompenzovat napětím. U rychlých modulátorů se proto vytváří sada kompenzačních elektrod.

$$\frac{P_{out}}{P_{in}} = \frac{1}{2} \left[1 + m \cos\left(\pi \frac{U - U_0}{U_{\pi}}\right) \right], \quad m < 1$$

Spínací poměr (extinkce, extinkční poměr)

$$E = 10\log\frac{P_{\max}}{P_{\min}} = 10\log\frac{1+m}{1-m}$$

Vložný útlum

$$L = 10 \log \frac{P_{in, fibre}}{P_{max, fibre}}$$

U kvalitních modulátorů $E \ge 20 \text{ dB}, IL \le 3 \text{ dB}$

Elektroopticky řízený Machův-Zehnderův interferometrický modulátor s postupnou vlnou

Komerční elektrooptické modulátory

Frequency Response

100 GHz LiNbO₃ modulátor s ovládacím napětím 5,1 V

Modulátor využívající inverzi domén v LiNbO₃

Zjednodušení elektrodové struktury:

UFE

Valerio Pruneri et al., Avanex Corporation, Italy ICFO, Spain ICREA, Spain, 2007

Modulátor pro kvadraturní fázovou modulaci (QPSK)

Imaginary axis

Modulační formát přenášející 2 bity/symbol

Realizace v LiNbO₃

Machův-Zehnderův interferometrický přepínač/modulátor v polovodičovém materiálu (InP/InGaAsP), elektrorefraktivní modulace

Elektrooptické vlnovodné přepínače

Elektroopticky řízená směrová odbočnice 2 nebo více sekcí opačně napájených "Δβ – reversal" Nízké ovládací napětí, komplikovaná spínací charakteristika, napětím lze korigovat tolerance paramertrů

Přepínač s dvouvidovou interferencí "two-mode interference coupler"

Nízké ovládací napětí, sinusová spínací charakteristika

Střední část vlnovodné struktury je dvouvidová. Symetrický vid má ve štěrbině mezi elektrodami maximum, antisymetrický vid minimum \Rightarrow vidy jsou ovlivňovány různě. Tím dojde k *fázovému posuvu* mezi nimi \Rightarrow *přepínání.* Oba tyto elektrooptické přepínače jsou **polarizačně závislé**.

Polarizačně nezávislý "digitální" optický přepínač (DOS) v LiNbO3

"Layout" optických vlnovodů a elektrodové struktury přepínače

Příprava EO modulátoru využívající technologii LNOI

Hromadná výroba elektrooptických přepínačů a dalších komponent využívající technologii "Lithium Niobate on Insulator" (LNOI) a DUV litografii

Optics Express Vol. 28, No. 17, 24452 (2020)

SEM obrázek části modulátoru

Optické spektrum signálu modulovaného frekvení 110 GHz

Počet přepínačů 1×2 ("DOS") potřebný pro realizaci přepínací matice N×N s "neblokující architekturou"

	N	Number of 1×2's
R&D R&D	2	4
/ailabi Fabr	4	24
ially ially	8	112
	16	480
	32	1984
	64	8064
	128	32,512
	256	130,560
$\left(\right)$	512	523,264
V	1024	2,095,104

Vlnovodné optické zesilovače a lasery (EDWA, EDWL)

Vlnovody z různých materiálů: (fosfátové) sklo, Al_2O_3 , LiNb O_3 , ... zesílení $\approx 10 \text{ dB}$

Výhody: malé rozměry, možnost současného zesilování signálů na různých "nosných" vlnových délkách možnost integrace s pasivními součástkami na jednom čipu ("zero-dB splitter")

Nevýhody: malá délka -> vysoká koncentrace dopantů, malé zesílení

Vlnovodný optický zesilovač dopovaný erbiem

Substrátové sklo a iontová výměna: VŠCHT, litografie a charakterizace: ÚFE

Vlnovodný optický zesilovač dopovaný erbiem

Substrátové sklo a iontová výměna: VŠCHT, litografie a charakterizace: ÚFE

Waveguide parameters	K ⁺	Ag^+
Mode-field dimensions	9.6×12.9 μm	6.1×7.0 μm
Mode-field dimensions @ 980 nm	6.9×10.5 μm	3.2×4.8 μm
Scattering loss @ 1550 nm	0.18 dB/cm	0.85 dB/cm

Vlnovodný zesilovač Al₂O₃: Er³⁺ na Si/SiO₂ podložce

spirála 1×1 mm² zisk 2,3 dB na λ = 1,55 µm při čerpání 10 mW na 1,48 µm

M.K. Smit et al. (TUD); Appl. Phys. Lett. 68, 1888 (1996)

Vlnovodný Ti:Er:LiNbO3 laser s integrovaným elektrooptickým modulátorem pro synchronizací vidů

Ultrakrátké pulsy (≤ 5 ps), opakovací frekvence ≈ 20 GHz

(Univerzita Paderborn, D, 1997-2000)

Polarizačně nezávislý akustoopticky laditelný začleňovací/vydělovací demultiplexor v LiNbO₃

Princip: kolineární AO TE-TM konverze

Střední vlnová délka $\lambda_c = 1,55 \ \mu m$, vzdálenost kanálů < 1 nm, přeladitelnost $\Delta \lambda \approx 70 \ nm$

Add-drop multiplexer s kaskádním řazením filtrů a kompenzací frekvenčního posuvu

(Univerzita Paderborn 1997-2000)

Kódov**ě** transparentní konverze vlnových délek pro optické komunika**č**ní systémy

Nelineární optický jev 2. řádu – generování rozdílové frekvence

$$K = 2\pi / \Lambda;$$
 $k_c = k_p - k_s + K;$

Probném: vlnovod je na $\omega_p \approx 2\omega_s$ dvou- až třívidový \Rightarrow obtížná excitace základního vidu.

Řešení: kaskádní aplikace dvou procesů

UFE

$$\chi^{(2)}$$

Kódov**ě** transparentní konverze vlnových délek pro optické komunika**č**ní systémy

Kaskáda dvou nelineárních třívlnových procesů (χ^2 : χ^2) v PPLN

Princip

- 1. generování 2. harmonické
- 2. generování rozdílové frekvence

$$K = 2\pi / \Lambda; \qquad k_{2p} = 2k_p + K;$$

$$k_c = k_{2p} - k_s - K = 2k_p - k_s \approx k_s$$

Aplikační možnosti

- Konverze vlnové délky
- Kompenzace disperze (inverze frekvenční závislosti!)
- Optické vzorkování rychlých průběhů

$$\omega_{c} = 2\omega_{p} - \omega_{s},$$
$$\omega_{c} = \omega_{p} - (\omega_{s} - \omega_{p})$$

Konec části 3

